AI中台建设经验分享,打造高效能企业组织

原创 爱分析ifenxi 2024-01-02 18:01






以往的零售企业一直处于使用统计预测工具阶段,但发展到如今有品牌的全渠道销售的消费品企业来讲,需要运用AI做更多决策、搭建更加复杂的模型,我们要思考如何令模型被真正的用起来。

本文将从AI中台建设的前因后果、建设过程中碰到的困难与价值效益、AI平台建设的前后对比个方面进行展开分享
分享嘉宾|高峻峻   上海欧睿供应链管理有限公司创始人&董事长
内容已做精简,如需获取专家完整版视频实录和课件,请扫码领取。


01

AI中台建设的前因后果

欧睿数据(以下简称欧睿)服务对象横跨时尚鞋服、大型零售连锁、食品美妆等行业,历经多年发展,已沉淀多个品牌内部模型。以往国内或者国外的零售企业并没有走到 AI 阶段,一直使用统计预测工具,由一个简单时间序列数据得出结果,但是发展到今天国内有品牌、有全渠道销售的消费品企业来讲,它面临的点在于要用 AI 来做很多决策,面对复杂的渠道和货品,搭建更复杂的决策模型。

在此情况下,有一个共同面临问题点,就是如何令模型真正被用起来?

模型不能是闭门造车、不稳定、无法持续使用,它需要便于使用、方便理解、能够校验,这个过程跟之前简单使用时间序列的预测完全不在一个层面,所以模型的有效与否,离不开打造过程中业务与算法间明确融合、协作和互动过程。

这个融合的过程非常需要AI中台,需要算法从模型的形成一直到被业务流程优化,模型共享跟协同、快速产生跟应用。

近五年我们的需求空前上涨,产生好模型的前提要业务跟算法完全融合与互动,这时候需要一个工具把事情的几个方面完整地管理起来。
随着我们服务的客户越来越多,算法团队人数较少,整体的工作效率较低。以当时的体量,继续为客户不断迭代模型的话,算法团队要成倍增长,迫切需要将资源的管理、模型协同流程的设计、模型应用效果、应用能力整体提升,让算法研发效率真正提升。

在上述背景下,我们选择建设AI中台,把整个算法模型的产生效率和过往的知识经验,沉淀成专门的知识库,使业务顾问与客户的业务团队,跟算法进行高效互动。

在实施阶段,欧睿前期进行了大量的准备工作:

(1)AI平台落地负责人,他们具备算法和业务双重知识,为后续推进提供了有力保障;

(2)项目实施负责人和解决方案负责人共同参与推进工作;

(3)项目实施负责人和解决方案负责人参与模型模板的提炼和讨论,从业务角度梳理和提炼模型知识库,明确适用场景、数据类型以及不同行业和产品的标签下模型的适用范围;

(4)这个过程中产品经理和研发团队紧密配合,明确落地过程中的关键需求及优先级,才能使得整个AI中台在我们内部顺利实施;

关注落地过程中的细节管理,如构建环境、项目管理等。项目实施负责人可根据需要发起不同项目,采用任务规划和项目协作的方式对AI平台项目进行管理。

解决方案的负责人是否能够看懂模型,也是 AI 中台重要的能力。让解决方案负责人可以看到所有数据的流转和模型最后的使用结果,要能容易地上手,就能释放一定的算法工程师。

所以此过程中离线任务、在线服务发布应用也有了多种,模型可以快速地被不懂技术的人使用起来。

02

建设过程中碰到的困难和效益价值

我们作为有一定决策模型的知识沉淀公司,在使用 AI 中台的过程中,感受到整个流程的连通非常重要,从一开始数据接入到数据的准备和清洗。

因为领域比较聚焦,所以领域里面所有数据接入的标准中间表,和准备、清洗中的关键步骤,都明确地进行了提炼,形成算法往下走的各种组件,区分通用组件和场景组件,通用组件用做培训,场景组件由业务驱动。明确算法人员的核心点在组件开发,经历隐性知识迁移和历史模型整合的跨越。

原来我们有很多的知识以资源库的方式呈现,所有的算法模型很难复用,比如说Python每个人的写法不一样, Python 模型的阅读难度也不小,基本在各个项目想要去复用都有一定的难度。因此,欧睿开始将模型中的隐性知识与过往的模型进行归纳和场景化,在明确模型沉淀为知识后,进一步明确了owner和模型维护的流程及规则,并添加了对模型的必要描述和要求,从而完成了知识管理体系的升级。

接下来算法要培训业务使用平台,根据不同场景,有时直接生成服务页面,业务人员可直接使用模型;有时将模型结果呈现,经过讨论后直接发布到预测系统、捕获系统、计划系统里。

其中也有一些难点。因为算法工程师的的背景、习惯、工作方式各异,可能会导致最终成果的提炼度不足。再加上算法公式有很多种类型,所以在做 AI 中台的过程中,要有明确规范流程,做知识提炼,如果知识提炼有困难,需要跟业务团队讨论,建立知识库,全过程有系列培训和整体要求。

之前国外计划软件采用的是在计划软件里直接嵌入统计预测模型的方式形成计划。但在新形式下,我们认为应由 AI 中台去做模型,由AI 接过数据中台、大数据计算平台的数据,包括其他应用系统跑的指标跟标签,在 AI 中台能够完整体现所有数据,是显性化的过程。最后进行模型效果检验,发布为服务推给应用系统,变成模型包或算法包,应用系统直接调用,立即产生业务价值,形成完整闭环。

所以 AI 中台介于数据中台和应用系统中,整个模型迭代效率高,若有数据方面的任何变化调整,可直接接入数据,对于零售企业来讲,价值是成功打造数字化决策的底座,相当于使用了 AI 中台和计划系统,然后用了我们或者自己的数据中台,最终数据流是全通,模型也是全通,模型一更新,发布的服务马上更新,就变成真正意义的数智化赋能。

对于我们的价值,让业务与算法团队一体化把模型的研发,从纯黑箱变成白箱,降低学习成本,项目上线部署,模型迭代速度都会提高。

03

AI 平台建设前后的比对

从算法工程师的角度,以前需要同时对接业务、顾问、数据、应用系统,还要做算法实现,整体效率较低。需要做一系列工作才能够建造可用模型,放到应用系统中进行使用。使用AI 中台后,算法工程师更多做模型模板,培训顾问与业务团队,学习数据对接怎么使用组件、工作流、学习生成应用。因为操作简单,运用可视化拖拉拽方式,对使用者而言不需要了解很多纯技术知识,只需学习产品使用。

由业务团队和顾问做模型的结果校验,快速在系统中调整参数,根据情况开放参数,都可以做成接口服务。算法工程师更聚焦在模型的优化和实现,部分工作可以交给其他人,没有太高的技术门槛,直接看结果,操作几个按钮,就可以相应的、快速的在模板上调参数。

上图是实际应用过程中的案例,先根据业务背景完成流程搭建,快速发布后生成页面服务,也可以形成API,推到应用系统,让应用系统使用。整体操作步骤简单,无需技术基础也可以快速做,只需4步就可以快速发布,让整体效率得到极大的提升。

04

专家对话:互动问答
以上就是本次的分享内容,如获取专家完整版视频实录和课件可扫码领取

长按二维码,领取完整版视频实录和课件
现任上海欧睿供应链管理有限公司创始人&董事长,横跨商品管理、供应链管理、运筹学、算法研究的资深学术背景,28年+商品与供应链决策数字化实践、咨询和研究的经验,需求链管理与大商品管理专家、OIBP智慧需求链解决方案创始人。

注:点击左下角“阅读原文”,领取专家完整版视频实录和分享课件


爱分析ifenxi 爱分析是一家中国领先的数字化市场研究与咨询机构。
评论
  • DeepSeek自成立之初就散发着大胆创新的气息。明明核心开发团队只有一百多人,却能以惊人的效率实现许多大厂望尘莫及的技术成果,原因不仅在于资金或硬件,而是在于扁平架构携手塑造的蜂窝创新生态。创办人梁文锋多次强调,与其与大厂竞争一时的人才风潮,不如全力培养自家的优质员工,形成不可替代的内部生态。正因这样,他对DeepSeek内部人才体系有着一套别具一格的见解。他十分重视中式教育价值,因而DeepSeek团队几乎清一色都是中国式学霸。许多人来自北大清华,或者在各种数据比赛中多次获奖,可谓百里挑一。
    优思学院 2025-03-13 12:15 47浏览
  • 在海洋监测领域,基于无人艇能够实现高效、实时、自动化的海洋数据采集,从而为海洋环境保护、资源开发等提供有力支持。其中,无人艇的控制算法训练往往需要大量高质量的数据支持。然而,海洋数据采集也面临数据噪声和误差、数据融合与协同和复杂海洋环境适应等诸多挑战,制约着无人艇技术的发展。针对这些挑战,我们探索并推出一套基于多传感器融合的海洋数据采集系统,能够高效地采集和处理海洋环境中的多维度数据,为无人艇的自主航行和控制算法训练提供高质量的数据支持。一、方案架构无人艇要在复杂海上环境中实现自主导航,尤其是完
    康谋 2025-03-13 09:53 44浏览
  • 曾经听过一个“隐形经理”的故事:有家公司,新人进来后,会惊讶地发现老板几乎从不在办公室。可大家依旧各司其职,还能在关键时刻自发协作,把项目完成得滴水不漏。新员工起初以为老板是“放羊式”管理,结果去茶水间和老员工聊过才发现,这位看似“隐形”的管理者其实“无处不在”,他提前铺好了企业文化、制度和激励机制,让一切运行自如。我的观点很简单:管理者的最高境界就是——“无为而治”。也就是说,你的存在感不需要每天都凸显,但你的思路、愿景、机制早已渗透到组织血液里。为什么呢?因为真正高明的管理,不在于事必躬亲,
    优思学院 2025-03-12 18:24 81浏览
  • 在追求更快、更稳的无线通信路上,传统射频架构深陷带宽-功耗-成本的“不可能三角”:带宽每翻倍,系统复杂度与功耗增幅远超线性增长。传统方案通过“分立式功放+多级变频链路+JESD204B 接口”的组合试图平衡性能与成本,却难以满足实时性严苛的超大规模 MIMO 通信等场景需求。在此背景下,AXW49 射频开发板以“直采+异构”重构射频范式:基于 AMD Zynq UltraScale+™ RFSoC Gen3XCZU49DR 芯片的 16 通道 14 位 2.5GSPS ADC 与 16
    ALINX 2025-03-13 09:27 32浏览
  • 一、行业背景与用户需求随着健康消费升级,智能眼部按摩仪逐渐成为缓解眼疲劳、改善睡眠的热门产品。用户对这类设备的需求不再局限于基础按摩功能,而是追求更智能化、人性化的体验,例如:语音交互:实时反馈按摩模式、操作提示、安全提醒。环境感知:通过传感器检测佩戴状态、温度、压力等,提升安全性与舒适度。低功耗长续航:适应便携场景,延长设备使用时间。高性价比方案:在控制成本的同时实现功能多样化。针对这些需求,WTV380-8S语音芯片凭借其高性能、多传感器扩展能力及超高性价比,成为眼部按摩仪智能化升级的理想选
    广州唯创电子 2025-03-13 09:26 33浏览
  • 一、行业背景与需求痛点智能电子指纹锁作为智能家居的核心入口,近年来市场规模持续增长,用户对产品的功能性、安全性和设计紧凑性提出更高要求:极致空间利用率:锁体内部PCB空间有限,需高度集成化设计。语音交互需求:操作引导(如指纹识别状态、低电量提醒)、安全告警(防撬、试错报警)等语音反馈。智能化扩展能力:集成传感器以增强安全性(如温度监测、防撬检测)和用户体验。成本与可靠性平衡:在复杂环境下确保低功耗、高稳定性,同时控制硬件成本。WTV380-P(QFN32)语音芯片凭借4mm×4mm超小封装、多传
    广州唯创电子 2025-03-13 09:24 41浏览
  • 文/杜杰编辑/cc孙聪颖‍主打影像功能的小米15 Ultra手机,成为2025开年的第一款旗舰机型。从发布节奏上来看,小米历代Ultra机型,几乎都选择在开年发布,远远早于其他厂商秋季主力机型的发布时间。这毫无疑问会掀起“Ultra旗舰大战”,今年影像手机将再次被卷上新高度。无意臆断小米是否有意“领跑”一场“军备竞赛”,但各种复杂的情绪难以掩盖。岁岁年年机不同,但将2-3年内记忆中那些关于旗舰机的发布会拼凑起来,会发现,包括小米在内,旗舰机的革新点,除了摄影参数的不同,似乎没什么明显变化。贵为旗
    华尔街科技眼 2025-03-13 12:30 60浏览
  • 前言在快速迭代的科技浪潮中,汽车电子技术的飞速发展不仅重塑了行业的面貌,也对测试工具提出了更高的挑战与要求。作为汽车电子测试领域的先锋,TPT软件始终致力于为用户提供高效、精准、可靠的测试解决方案。新思科技出品的TPT软件迎来了又一次重大更新,最新版本TPT 2024.12将进一步满足汽车行业日益增长的测试需求,推动汽车电子技术的持续革新。基于当前汽车客户的实际需求与痛点,结合最新的技术趋势,对TPT软件进行了全面的优化与升级。从模型故障注入测试到服务器函数替代C代码函数,从更准确的需求链接到P
    北汇信息 2025-03-13 14:43 37浏览
  •        随着人工智能算力集群的爆发式增长,以及5.5G/6G通信技术的演进,网络数据传输速率的需求正以每年30%的速度递增。万兆以太网(10G Base-T)作为支撑下一代数据中心、高端交换机的核心组件,其性能直接决定了网络设备的稳定性与效率。然而,万兆网络变压器的技术门槛极高:回波损耗需低于-20dB(比千兆产品严格30%),耐压值需突破1500V(传统产品仅为1000V),且需在高频信号下抑制电磁干扰。全球仅有6家企业具备规模化量产能力,而美信科
    中科领创 2025-03-13 11:24 40浏览
  • 北京时间3月11日,国内领先的二手消费电子产品交易和服务平台万物新生(爱回收)集团(纽交所股票代码:RERE)发布2024财年第四季度和全年业绩报告。财报显示,2024年第四季度万物新生集团总收入48.5亿元,超出业绩指引,同比增长25.2%。单季non-GAAP经营利润1.3亿元(non-GAAP口径,即经调整口径,均不含员工股权激励费用、无形资产摊销及因收购产生的递延成本,下同),并汇报创历史新高的GAAP净利润7742万元,同比增长近27倍。总览全年,万物新生总收入同比增长25.9%达到1
    华尔街科技眼 2025-03-13 12:23 47浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦