本应用笔记旨在帮助客户使用Microchip的10/100/1000 Mbps以太网器件系列设计PCB。本文档提供有关PCB布线建议, PCB 布线是保持信号完整性和减少EMI问题的关键环节。本文涵盖以下主题:
• 通用PCB布线指南
• 以太网布线指南
• EMI注意事项
• ESD注意事项
• 常见布线问题疑难解答
电源注意事项:
确保足够的电源额定值。确认所有电源和稳压器都能提供所需的电流大小。
电源输出纹波应限制在50 mV以下(为了获得最佳性能,最好小于10 mV)。
所有电源和地平面上的噪声水平应限制在50 mV以下。
铁氧体磁珠的额定电流应为预期提供电流的4-6倍。另外,还应考虑因温度产生 的降额。
器件去耦:
PCB装配上的每个高速半导体器件都需要去耦电容。每个电源引脚都需要一个去耦电容。
去耦电容值取决于应用。典型的去耦电容值范围为0.001 μF至0.1 μF。
总去耦电容应大于提供给数字输出缓冲器的负载电容,以避免将噪声引入电源。
通常,选择II类介电电容进行去耦。首选方案是X7R介电陶瓷电容,因为它具有出色的稳定性、合理的封装尺寸以及优异的电容特性。设计人员的第二个选择是X5R介电电容,因为它具有出色的稳定性。但是,X5R在封装尺寸与电容特性方面可能会存在一定的限制。考虑去耦电容特性时,低电感至关重要。
每个去耦电容都应尽可能靠近要去耦的电源引脚。
所有去耦电容引线应尽可能短。最佳做法是将电容直接连接到地以及顶层的电源引脚。如果不得不使用过孔,则焊盘到过孔的连接长度应小于10 mil。走线连接应尽可能宽,以降低电感。
强烈建议考虑通过两个过孔连接所有旁路电容的地,以极大地减小该连接的电感。
PCB旁路:
➤ 旁路电容应放置在靠近PCB上所有电源入口点的位置。这些电容从高速数字负载吸收高频电流。
➤ 设计中的所有电源连接和所有稳压器均应使用旁路电容。
➤ 旁路电容的值取决于应用,由电源的频率以及负载瞬态幅值和频率决定。
➤ 所有旁路电容引线应尽可能短。最佳做法是将电容直接连接到地以及顶层的电源引脚。如果不得不在表面贴装焊盘外使用过孔,则焊盘到过孔的连接长度应小于10 mil。走线连接应尽可能宽,以降低电感。
➤ 强烈建议考虑通过两个过孔连接所有旁路电容的地,以极大地减小该连接的电感。
图1 PCB旁路技术示例
PCB大电容:
➤必须适当利用大电容,以将开关噪声降至最低。大电容有助于保持恒定的直流电压和电流大小。
➤设计中的所有电源平面和稳压器均应使用大电容。
➤旁路电容的值取决于应用,由电源的频率以及负载瞬态幅值和频率决定。
➤所有大电容引线应尽可能短。最佳解决方案是在表面贴装焊盘内使用平面连接过孔。在表面贴装焊盘外使用过孔时,焊盘到过孔的连接长度应小于10mil。走线连接应尽可能宽,以降低电感。
➤遵循良好的设计原则,只要在电路中使用铁氧体磁珠,就应在铁氧体磁珠的每一侧放置大电容。
➤如果在USB连接器上使用铁氧体磁珠来对VCC进行滤波,则建议不要在USB连接器侧使用大电容。这是限制USB电路浪涌电流的一种尝试。Microchip强烈建议在铁氧体磁珠内侧使用4.7μF的大电容。
PCB层策略:
➤所有以太网LAN设计至少使用4层PCB。
➤在典型的PCB层叠结构中,顶层(元件侧)为信号,第2层为固定连续地平面,第3层为固定电源平面,第4层为另一个信号。第1层被视为主要的关键布线和元件层,因为其正下方是固定数字地平面。另外,第1层不需要通过过孔来连接位于第1层的元件。
➤所有PCB走线(尤其是高速和关键信号走线)应在固定连续地平面层相邻的第1层上布线。这些走线必须具有连续的参考平面,才能满足其整个传导长度的要求。应避免信号走线穿过平面分割处(图2),因为这会导致不可预测的返回路径电流,并且可能引起信号完整性问题以及产生EMI问题。如果不得不穿过参考平面中的分割处,请考虑添加拼接电容。
➤需要将以太网机架地平面与数字地平面分离。
➤避免在PCB设计和系统设计中形成接地回路。
➤为了便于布线并最大程度减少信号串扰问题,多层设计中的相邻层应以正交方式布线。
图2 信号穿过平面分割处的示例
推荐的层叠布局
• 四层板
- 信号 1 (顶层)
- GND
- 电源平面/GND
- 信号2
• 六层板
- 信号 1 (顶层)
- 电源平面/GND
- 信号2(最适合时钟和高速信号)
- 信号3(最适合时钟和高速信号)
- GND
- 信号4
信号完整性问题:
➤ 根据需要为所有高速开关信号和时钟线提供交流端接。在走线的负载端进行上述端接。随着PCB上走线长度的增加,这一设计问题变得更加关键。
➤ 提供阻抗匹配的串联端接,以最大程度地减小关键信号(地址、数据和控制线)中的振铃、过冲和下冲。这些串联端接应位于走线的驱动器端,而不是走线的负载端。随着PCB上走线长度的增加,这一设计问题变得更加关键。
➤ 尽量减少在整个设计中使用过孔。过孔会增加信号走线的电感。
➤ 请务必查看整个PCB设计,了解是否有走线在任何参考平面切口上方穿过。这很有可能会引起EMC问题。
➤ 通常,应查看所有信号串扰设计规则以避免串扰问题。确保走线间有足够的间隔,以避免串扰问题。
➤ 也可使用保护走线来最大程度地减少串扰问题。
PCB走线注意事项:
➤ 避免在高速数据走线中使用90度角。这类角度会影响走线宽度和快速信号的阻抗控制。
➤ 要使 PCB 走线能够提供所需电流量,应为其设计合理的宽度。在顶层或底层的局部区域中使用迷你平面,这样可确保提供足够的电流。
➤ 连接任何电源平面或地平面的所有元件引线应尽可能短。最佳解决方案是在表面贴装焊盘内使用平面连接过孔。在表面贴装焊盘外使用过孔时,焊盘到过孔的连接长度应小于10 mil。走线连接应尽可能宽,以降低电感。这包括为电源层供电的任何铁氧体磁珠以及为电源层供电的熔丝等 。
晶振电路:
➤ 将所有晶振电路元件置于顶层。这将使所有这些元件及其走线以同一数字地平面为参考。
➤ 尽可能将所有晶振元件和走线与其他信号隔离。晶振对杂散电容和其他信号的噪声敏感。晶振还可能干扰其他信号并引起EMI噪声。
➤ 负载电容、晶振和并联电阻应靠近彼此放置。负载电容的接地连接应较短,并远离USB和VBUS电源线的返回电流。负载电容的返回路径应连接到数字逻辑电源的地平面。
➤ 从以太网器件到晶振、电阻和电容的PCB走线应在长度上匹配,彼此应尽可能靠近,同时保持最短的路径。长度匹配的优先级应高于最短的路径长度。
➤ 验证晶振电路在应用的整个工作范围内工作时是否符合规范(+/-50 PPM)。这包括温度、时间和应用容差。
接地标志(外露焊盘)中的过孔:
➤ 在GND标志上打满过孔,以确保到地平面的热连接和电气连接良好。地平面应为1 oz或更高值,以确保器件具有固定的GND参考。这将有助于降低GND噪声并为器件提供理想的散热效果。图3给出了标志焊盘中的接地过孔区示例。
图3 标志焊盘中的接地过孔区示例
图6 高压势垒—— 延伸到磁件的中间位置
硬件工程师及从业者都在关注我们
声明:
推荐阅读▼
电路设计-电路分析
EMC相关文章
电子元器件
后台回复“加群”,管理员拉你加入同行技术交流群。