稳压芯片并联的问题

原创 TsinghuaJoking 2023-12-24 09:45

一、前言

  如果一个稳压芯片输出电流不能够满足要求,是否可以简单的将两个稳压芯片进行并联提供更大的输出电流呢? 下面简单测试一下,看会出现什么问题。

二、测试电路

  设计两路稳压芯片并联电路。这里给出了两路独立的稳压芯片 7805。它们的输出可以并联在一起,为负载提供输出电流。输入分开,由不同的直流电源提供工作电流,也间接获得每个稳压器的工作电流。下面也设计了 1117 ,3.3V的稳压芯片。该电路板也可以对1117 稳压芯片进行测试。使用单面板制作测试电路。

  一分钟之后获得测试电路板。检查一下制作的情况。非常完美。焊接电路板。先测试两个 AS1117 稳压芯片的并联情况。通过可编程直流电源和电子负载对其进行测试。

▲ 图1.2.1 测试电路图


▲ 图1.2.2 测试PCB图


三、测试结果

  下面使用电子负载,分别测试两个 AS1117 的输出特性。负载电流范围是 300mA。两个1117  的输入电压为9V。记录每个电流下对应的芯片输出。这是第一个芯片的输出特性。右面电压下降快,猜测是芯片发热造成的。第二个芯片特性比较平直。估计它的温度特性比较稳定。从这里可以看到 ,两个稳压芯片输出特性差别还是蛮大的。

▲ 图1.3.1 AS1117芯片1的电压与电流特性


cdim=[0.0000,0.0030,0.0061,0.0091,0.0121,0.0152,0.0182,0.0212,0.0242,0.0273,0.0303,0.0333,0.0364,0.0394,0.0424,0.0455,0.0485,0.0515,0.0545,0.0576,0.0606,0.0636,0.0667,0.0697,0.0727,0.0758,0.0788,0.0818,0.0848,0.0879,0.0909,0.0939,0.0970,0.1000,0.1030,0.1061,0.1091,0.1121,0.1152,0.1182,0.1212,0.1242,0.1273,0.1303,0.1333,0.1364,0.1394,0.1424,0.1455,0.1485,0.1515,0.1545,0.1576,0.1606,0.1636,0.1667,0.1697,0.1727,0.1758,0.1788,0.1818,0.1848,0.1879,0.1909,0.1939,0.1970,0.2000,0.2030,0.2061,0.2091,0.2121,0.2152,0.2182,0.2212,0.2242,0.2273,0.2303,0.2333,0.2364,0.2394,0.2424,0.2455,0.2485,0.2515,0.2545,0.2576,0.2606,0.2636,0.2667,0.2697,0.2727,0.2758,0.2788,0.2818,0.2848,0.2879,0.2909,0.2939,0.2970,0.3000]
vdim=[3.2967,3.2967,3.2967,3.2967,3.2934,3.2925,3.2917,3.2909,3.2902,3.2895,3.2887,3.2881,3.2870,3.2863,3.2855,3.2848,3.2841,3.2833,3.2826,3.2817,3.2809,3.2801,3.2794,3.2787,3.2780,3.2773,3.2766,3.2756,3.2748,3.2741,3.2734,3.2727,3.2720,3.2713,3.2705,3.2698,3.2691,3.2682,3.2675,3.2668,3.2661,3.2654,3.2646,3.2640,3.2633,3.2625,3.2616,3.2609,3.2601,3.2594,3.2588,3.2580,3.2573,3.2566,3.2557,3.2550,3.2543,3.2536,3.2529,3.2522,3.2514,3.2507,3.2500,3.2493,3.2486,3.2477,3.2470,3.2463,3.2456,3.2450,3.2442,3.2434,3.2428,3.2418,3.2412,3.2404,3.2396,3.2389,3.2382,3.2375,3.2367,3.2357,3.2350,3.2342,3.2334,3.2328,3.2321,3.2314,3.2307,3.2295,3.2287,3.2279,3.2270,3.2262,3.2253,3.2245,3.2236,3.2225,3.2214,3.2205]
#!/usr/local/bin/python
# -*- coding: gbk -*-
#******************************
# TEST1.PY                   - by Dr. ZhuoQing 2023-12-21
#
# Note:
#******************************

from headm import *
from tsmodule.tsvisa        import *

dl3021open(109)


dl3021setcurrent(0)
dl3021on()

cdim = linspace(00.3100)
vdim = []


for c in cdim:
    dl3021setcurrent(c)
    time.sleep(1)
    v = dl3021volt()
    printff(c, v)
    vdim.append(v)
    tspsave('u1', cdim=cdim, vdim=vdim)


dl3021setcurrent(0)
dl3021off()

plt.plot(cdim, vdim, lw=3)

plt.xlabel("Current(A)")
plt.ylabel("Voltage(VA)")
plt.grid(True)
plt.tight_layout()
plt.show()


#------------------------------------------------------------
printf("\a")



#------------------------------------------------------------
#        END OF FILE : TEST1.PY
#******************************

▲ 图1.3.2 第二个芯片对应的输出电流与电压


cdim=[0.0000,0.0030,0.0061,0.0091,0.0121,0.0152,0.0182,0.0212,0.0242,0.0273,0.0303,0.0333,0.0364,0.0394,0.0424,0.0455,0.0485,0.0515,0.0545,0.0576,0.0606,0.0636,0.0667,0.0697,0.0727,0.0758,0.0788,0.0818,0.0848,0.0879,0.0909,0.0939,0.0970,0.1000,0.1030,0.1061,0.1091,0.1121,0.1152,0.1182,0.1212,0.1242,0.1273,0.1303,0.1333,0.1364,0.1394,0.1424,0.1455,0.1485,0.1515,0.1545,0.1576,0.1606,0.1636,0.1667,0.1697,0.1727,0.1758,0.1788,0.1818,0.1848,0.1879,0.1909,0.1939,0.1970,0.2000,0.2030,0.2061,0.2091,0.2121,0.2152,0.2182,0.2212,0.2242,0.2273,0.2303,0.2333,0.2364,0.2394,0.2424,0.2455,0.2485,0.2515,0.2545,0.2576,0.2606,0.2636,0.2667,0.2697,0.2727,0.2758,0.2788,0.2818,0.2848,0.2879,0.2909,0.2939,0.2970,0.3000]
vdim=[3.3192,3.3187,3.3188,3.3182,3.3152,3.3149,3.3142,3.3134,3.3128,3.3121,3.3115,3.3109,3.3100,3.3093,3.3088,3.3081,3.3075,3.3068,3.3061,3.3052,3.3046,3.3039,3.3032,3.3026,3.3020,3.3013,3.3006,3.2997,3.2990,3.2984,3.2977,3.2970,3.2964,3.2957,3.2950,3.2944,3.2937,3.2927,3.2920,3.2913,3.2907,3.2900,3.2893,3.2885,3.2879,3.2872,3.2862,3.2855,3.2848,3.2840,3.2832,3.2824,3.2817,3.2808,3.2798,3.2789,3.2781,3.2774,3.2767,3.2759,3.2748,3.2738,3.2730,3.2722,3.2713,3.2702,3.2693,3.2686,3.2677,3.2665,3.2655,3.2649,3.2640,3.2626,3.2613,3.2600,3.2589,3.2579,3.2565,3.2551,3.2539,3.2519,3.2504,3.2488,3.2472,3.2457,3.2442,3.2424,3.2406,3.2385,3.2365,3.2336,3.2306,3.2280,3.2247,3.2216,3.2181,3.2136,3.2086,3.2029]

▲ 图1.3.3 将两个稳压芯片电流电压曲线绘制在一起


#!/usr/local/bin/python
# -*- coding: gbk -*-
#******************************
# TEST2.PY                   - by Dr. ZhuoQing 2023-12-21
#
# Note:
#******************************

from headm import *

cdim0, vdim0 = tspload('u1''cdim''vdim')
cdim1, vdim1 = tspload('u2''cdim''vdim')

plt.plot(cdim0, vdim0, lw=3, label='U1')
plt.plot(cdim1, vdim1, lw=3, label='U2')

plt.xlabel("Current(A)")
plt.ylabel("Voltage(V)")
plt.grid(True)
plt.legend(loc="upper right")
plt.tight_layout()
plt.show()


#------------------------------------------------------------
#        END OF FILE : TEST2.PY
#******************************

  在测试过程中,不小心短路将第二芯片烧坏了。更换了一支新的芯片。重新测量它的输出特性。对比三个1117 的输出特性,可以看到它们之间的差别还是比较大的。

▲ 图1.3.4 第三只1117 的电压电流特性


cdim=[0.0000,0.0030,0.0061,0.0091,0.0121,0.0152,0.0182,0.0212,0.0242,0.0273,0.0303,0.0333,0.0364,0.0394,0.0424,0.0455,0.0485,0.0515,0.0545,0.0576,0.0606,0.0636,0.0667,0.0697,0.0727,0.0758,0.0788,0.0818,0.0848,0.0879,0.0909,0.0939,0.0970,0.1000,0.1030,0.1061,0.1091,0.1121,0.1152,0.1182,0.1212,0.1242,0.1273,0.1303,0.1333,0.1364,0.1394,0.1424,0.1455,0.1485,0.1515,0.1545,0.1576,0.1606,0.1636,0.1667,0.1697,0.1727,0.1758,0.1788,0.1818,0.1848,0.1879,0.1909,0.1939,0.1970,0.2000,0.2030,0.2061,0.2091,0.2121,0.2152,0.2182,0.2212,0.2242,0.2273,0.2303,0.2333,0.2364,0.2394,0.2424,0.2455,0.2485,0.2515,0.2545,0.2576,0.2606,0.2636,0.2667,0.2697,0.2727,0.2758,0.2788,0.2818,0.2848,0.2879,0.2909,0.2939,0.2970,0.3000]
vdim=[3.3015,3.3014,3.3012,3.3008,3.2982,3.2976,3.2969,3.2963,3.2957,3.2951,3.2945,3.2938,3.2930,3.2924,3.2918,3.2913,3.2907,3.2901,3.2896,3.2887,3.2881,3.2876,3.2870,3.2865,3.2859,3.2853,3.2847,3.2839,3.2833,3.2828,3.2822,3.2817,3.2811,3.2806,3.2799,3.2794,3.2789,3.2781,3.2775,3.2769,3.2763,3.2757,3.2752,3.2746,3.2740,3.2735,3.2726,3.2720,3.2714,3.2709,3.2702,3.2696,3.2691,3.2684,3.2675,3.2669,3.2663,3.2657,3.2651,3.2644,3.2635,3.2629,3.2622,3.2616,3.2609,3.2600,3.2593,3.2586,3.2580,3.2572,3.2565,3.2558,3.2550,3.2539,3.2531,3.2524,3.2516,3.2508,3.2500,3.2492,3.2484,3.2473,3.2465,3.2457,3.2449,3.2441,3.2434,3.2425,3.2417,3.2406,3.2398,3.2389,3.2382,3.2372,3.2363,3.2353,3.2342,3.2329,3.2317,3.2304]

▲ 图1.3.5 三个芯片输出特性


  将两个1117并联在一起,输入电压同样为9V,此时可以看到,它们各自的静态电流不太一样。一个为 0.9mA,另外一个为 5.6mA。下面使用电子负载测量两个 1117 并联后各自的电流变化。

  使用电子负载测试并联后的两个 1117 工作电流。工作电流可以通过DH1766 直接读出。测量结果令人感到惊讶。居然在整个输出电流范围内,两个 1117 只有一个为负载提供电流。另外一个始终输出 0mA。这让我破防了。实在是没有想到。手触碰两个 1117,会发现一个已经发烫,另外一个没有温度。

▲ 图1.3.6 并联后两个1117在不同负载下输出电流


#!/usr/local/bin/python
# -*- coding: gbk -*-
#******************************
# TEST3.PY                   - by Dr. ZhuoQing 2023-12-21
#
# Note:
#******************************

from headm import *


from tsmodule.tsvisa        import *

dl3021open(109)
dl3021setcurrent(0)
dl3021on()


#------------------------------------------------------------

cdim = linspace(00.3100)
c1dim = []
c2dim = []


for c in cdim:
    dl3021setcurrent(c)
    time.sleep(1)
    ca = dh1766call1()

    printff(c, ca)
    c1dim.append(ca[0])
    c2dim.append(ca[1])

    tspsave('1117', cdim=cdim, c1dim=c1dim, c2dim=c2dim)


dl3021setcurrent(0)
dl3021off()

plt.plot(cdim, c1dim, lw=3, label='U1')
plt.plot(cdim, c2dim, lw=3, label='U2')

plt.xlabel("Current(A)")
plt.ylabel("Current(A)")
plt.grid(True)
plt.tight_layout()
plt.show()


#------------------------------------------------------------
#        END OF FILE : TEST3.PY
#******************************
cdim=[0.0000,0.0030,0.0061,0.0091,0.0121,0.0152,0.0182,0.0212,0.0242,0.0273,0.0303,0.0333,0.0364,0.0394,0.0424,0.0455,0.0485,0.0515,0.0545,0.0576,0.0606,0.0636,0.0667,0.0697,0.0727,0.0758,0.0788,0.0818,0.0848,0.0879,0.0909,0.0939,0.0970,0.1000,0.1030,0.1061,0.1091,0.1121,0.1152,0.1182,0.1212,0.1242,0.1273,0.1303,0.1333,0.1364,0.1394,0.1424,0.1455,0.1485,0.1515,0.1545,0.1576,0.1606,0.1636,0.1667,0.1697,0.1727,0.1758,0.1788,0.1818,0.1848,0.1879,0.1909,0.1939,0.1970,0.2000,0.2030,0.2061,0.2091,0.2121,0.2152,0.2182,0.2212,0.2242,0.2273,0.2303,0.2333,0.2364,0.2394,0.2424,0.2455,0.2485,0.2515,0.2545,0.2576,0.2606,0.2636,0.2667,0.2697,0.2727,0.2758,0.2788,0.2818,0.2848,0.2879,0.2909,0.2939,0.2970,0.3000]
c1dim=[0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009,0.0009]
c2dim=[0.0056,0.0056,0.0056,0.0124,0.0162,0.0192,0.0222,0.0250,0.0277,0.0307,0.0338,0.0366,0.0405,0.0434,0.0463,0.0491,0.0519,0.0549,0.0579,0.0617,0.0647,0.0674,0.0705,0.0733,0.0763,0.0792,0.0822,0.0861,0.0891,0.0921,0.0950,0.0979,0.1009,0.1038,0.1066,0.1094,0.1123,0.1163,0.1192,0.1219,0.1250,0.1278,0.1308,0.1337,0.1367,0.1396,0.1434,0.1461,0.1491,0.1520,0.1549,0.1579,0.1607,0.1636,0.1676,0.1704,0.1733,0.1763,0.1792,0.1820,0.1858,0.1888,0.1917,0.1945,0.1974,0.2014,0.2043,0.2072,0.2100,0.2129,0.2158,0.2186,0.2216,0.2255,0.2284,0.2313,0.2343,0.2372,0.2401,0.2430,0.2458,0.2498,0.2527,0.2556,0.2583,0.2614,0.2642,0.2671,0.2700,0.2738,0.2769,0.2798,0.2827,0.2854,0.2886,0.2913,0.2941,0.2980,0.3009,0.3038]

  更换了另外一对1117重新进行测量。使用电子负载为并联1117 提供负载。它们输出电流相差 50% 左右。

▲ 图1.3.7 另外两组1117 并联输出电流


  最后测试两个 7805 并联的结果。输入电压为 9V。负载电流从0变化到300mA,可以看到两个7805 的工作电流相差很大。

▲ 图1.3.8 两个 7805 并联输出


  结 ※

  文对于两个稳压芯片的并联进行了测试,可以看到这种情况如果不使用均流方法,是无法工作的。与其并联这些稳压芯片,不如采用其它方式进行扩容。


TsinghuaJoking 这是一个公众号,它不端、不装,与你同游在课下、课上。 卓晴博士,清华大学中央主楼 626A。010-62773349, 13501115467,zhuoqing@tsinghua.edu.cn
评论
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 97浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 106浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 110浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 94浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 112浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 92浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 82浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 96浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 79浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 91浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦