串口FIFO+Timer实现高效收发数据

李肖遥 2023-12-22 11:44
    关注、星标公众号,直达精彩内容

摘要:本文在探讨传统数据收发不足之后,介绍如何使用带FIFO的串口来减少接收中断次数,通过一种自定义通讯协议格式,给出帧打包方法;之后介绍一种特殊的串口数据发送方法,可在避免使用串口发送中断的情况下,提高系统的响应速度。

1. 简介

串口由于使用简单,价格低廉,配合RS485芯片可以实现长距离、抗干扰能力强的局域网络而被广泛使用。随着产品功能的增多,需要处理的任务也越来越复杂,系统任务也越来越需要及时响应。
绝大多数的现代单片机(ARM7、Cortex-M3)串口都带有一定数量的硬件FIFO,本文将介绍如何使用硬件FIFO来减少接收中断次数,提高发送效率。在此之前,先来列举一下传统串口数据收发的不足之处:
(1)每接收一个字节数据,产生一次接收中断。不能有效的利用串口硬件FIFO,减少中断次数。
(2)应答数据采用等待发送的方法。由于串行数据传输的时间远远跟不上CPU的处理时间,等待串口发送完当前字节再发送下一字节会造成CPU资源浪费,不利于系统整体响应(在1200bps下,发送一字节大约需要10ms,如果一次发送几十个字节数据,CPU会长时间处于等待状态)。
(3)应答数据采用中断发送。增加一个中断源,增加系统的中断次数,这会影响系统整体稳定性(从可靠性角度考虑,中断事件应越少越好)。
(4)针对上述的不足之处,将结合一个常用自定义通讯协议,提供一个完整的解决方案。

2.串口FIFO

串口FIFO可以理解为串口专用的缓存,该缓存采用先进先出方式。数据接收FIFO和数据发送FIFO通常是独立的两个硬件。
串口接收的数据,先放入接收FIFO中,当FIFO中的数据达到触发值(通常触发值为1、2、4、8、14字节)或者FIFO中的数据虽然没有达到设定值但是一段时间(通常为3.5个字符传输时间)没有再接收到数据,则通知CPU产生接收中断;发送的数据要先写入发送FIFO,只要发送FIFO未空,硬件会自动发送FIFO中的数据。
写入发送FIFO的字节个数受FIFO最大深度影响,通常一次写入最多允许16字节。上述列举的数据跟具体的硬件有关,CPU类型不同,特性也不尽相同,使用前应参考相应的数据手册。

3.数据接收与打包

FIFO可以缓存串口接收到的数据,因此我们可以利用FIFO来减少中断次数。以NXP的lpc1778芯片为例,接收FIFO的触发级别可以设置为1、2、4、8、14字节,推荐使用8字节或者14字节,这也是PC串口接收FIFO的默认值。
这样,当接收到大量数据时,每8个字节或者14个字节才会产生一次中断(最后一次接收除外),相比接收一个字节即产生一个中断,这种方法串口接收中断次数大大减少。
将接收FIFO设置为8或者14字节也十分简单,还是以lpc1778为例,只需要设置UART FIFO控制寄存器UnFCR即可。
接收的数据要符合通讯协议规定,数据与协议是密不可分的。通常我们需要将接收到的数据根据协议打包成一帧,然后交由上层处理。下面介绍一个自定义的协议帧格式,并给出一个通用打包成帧的方法。
自定义协议格式如图3-1所示。
  • 帧首:通常是3~5个0xFF或者0xEE
  • 地址号:要进行通讯的设备的地址编号,1字节
  • 命令号:对应不同的功能,1字节
  • 长度:数据区域的字节个数,1字节
  • 数据:与具体的命令号有关,数据区长度可以为0,整个帧的长度不应超过256字节
  • 校验:异或和校验(1字节)或者CRC16校验(2字节),本例使用CRC16校验
下面介绍如何将接收到的数据按照图3-1所示的格式打包成一帧。

3.1 定义数据结构

typedef struct 
{
  
    uint8_t * dst_buf;                  //指向接收缓存  
    uint8_t sfd;                        //帧首标志,为0xFF或者0xEE  
    uint8_t sfd_flag;                   //找到帧首,一般是3~5个FF或EE  
    uint8_t sfd_count;                  //帧首的个数,一般3~5个  
    uint8_t received_len;               //已经接收的字节数  
    uint8_t find_fram_flag;             //找到完整帧后,置1  
    uint8_t frame_len;                  //本帧数据总长度,这个区域是可选的  
}find_frame_struct;

3.2 初始化数据结构,一般放在串口初始化中

/** 
* @brief    初始化寻找帧的数据结构 
* @param    p_fine_frame:指向打包帧数据结构体变量 
* @param    dst_buf:指向帧缓冲区 
* @param    sfd:帧首标志,一般为0xFF或者0xEE 
*/
  
void init_find_frame_struct(find_frame_struct * p_find_frame,uint8_t *dst_buf,uint8_t sfd)  
{  
    p_find_frame->dst_buf=dst_buf;  
    p_find_frame->sfd=sfd;  
    p_find_frame->find_fram_flag=0;  
    p_find_frame->frame_len=10;       
    p_find_frame->received_len=0;  
    p_find_frame->sfd_count=0;  
    p_find_frame->sfd_flag=0;  

3.3 数据打包程序

/** 
* @brief    寻找一帧数据  返回处理的数据个数 
* @param    p_find_frame:指向打包帧数据结构体变量 
* @param    src_buf:指向串口接收的原始数据 
* @param    data_len:src_buf本次串口接收到的原始数据个数 
* @param    sum_len:帧缓存的最大长度 
* @return   本次处理的数据个数 
*/
  
uint32_t find_one_frame(find_frame_struct * p_find_frame,const uint8_t * src_buf,uint32_t data_len,uint32_t sum_len)  
{  
    uint32_t src_len=0;  
    while(data_len--)  
    {  
        if(p_find_frame ->sfd_flag==0)                        
        {   //没有找到起始帧首  
            if(src_buf[src_len++]==p_find_frame ->sfd)  
            {  
                p_find_frame ->dst_buf[p_find_frame ->received_len++]=p_find_frame ->sfd;  
                if(++p_find_frame ->sfd_count==5)          
                {  
                    p_find_frame ->sfd_flag=1;  
                    p_find_frame ->sfd_count=0;  
                    p_find_frame ->frame_len=10;  
                }  
            }  
            else  
            {  
                p_find_frame ->sfd_count=0;   
                p_find_frame ->received_len=0;   
            }  
        }  
        else   
        {   //是否是"长度"字节? Y->获取这帧的数据长度  
            if(7==p_find_frame ->received_len)                
            {  
                p_find_frame->frame_len=src_buf[src_len]+5+1+1+1+2//帧首+地址号+命令号+数据长度+校验       
                if(p_find_frame->frame_len>=sum_len)  
                {   //这里处理方法根据具体应用不一定相同  
                    MY_DEBUGF(SLAVE_DEBUG,("数据长度超出缓存!\n"));  
                    p_find_frame->frame_len= sum_len;       
                }  
            }  
              
            p_find_frame ->dst_buf[p_find_frame->received_len++]=src_buf[src_len++];                
            if(p_find_frame ->received_len==p_find_frame ->frame_len)                  
            {  
                p_find_frame ->received_len=0;              //一帧完成    
                p_find_frame ->sfd_flag=0;  
                p_find_frame ->find_fram_flag=1;                   
                return src_len;  
            }  
        }  
    }  
    p_find_frame ->find_fram_flag=0;  
    return src_len;  

使用例子:
定义数据结构体变量:
find_frame_struct slave_find_frame_srt;
定义接收数据缓冲区:
#define SLAVE_REC_DATA_LEN  128
uint8_t slave_rec_buf[SLAVE_REC_DATA_LEN];
在串口初始化中调用结构体变量初始化函数:
init_find_frame_struct(&slave_find_frame_srt,slave_rec_buf,0xEE);
在串口接收中断中调用数据打包函数:
find_one_frame(&slave_find_frame_srt,tmp_rec_buf,data_len,SLAVE_REC_DATA_LEN);
其中,rec_buf是串口接收临时缓冲区,data_len是本次接收的数据长度。

4.数据发送

前文提到,传统的等待发送方式会浪费CPU资源,而中断发送方式虽然不会造成CPU资源浪费,但又增加了一个中断源。在我们的使用中发现,定时器中断是几乎每个应用都会使用的,我们可以利用定时器中断以及硬件FIFO来进行数据发送,通过合理设计后,这样的发送方法即不会造成CPU资源浪费,也不会多增加中断源和中断事件。
需要提前说明的是,这个方法并不是对所有应用都合适,对于那些没有开定时器中断的应用本方法当然是不支持的,另外如果定时器中断间隔较长而通讯波特率又特别高的话,本方法也不太适用。
公司目前使用的通讯波特率一般比较小(1200bps、2400bps),在这些波特率下,定时器间隔为10ms以下(含10ms)就能满足。如果定时器间隔为1ms以下(含1ms),是可以使用115200bps的。
本方法主要思想是:定时器中断触发后,判断是否有数据要发送,如果有数据要发送并且满足发送条件,则将数据放入发送FIFO中,对于lpc1778来说,一次最多可以放16字节数据。之后硬件会自动启动发送,无需CPU参与。
下面介绍如何使用定时器发送数据,硬件载体为RS485。因为发送需要操作串口寄存器以及RS485方向控制引脚,需跟硬件密切相关,以下代码使用的硬件为lpc1778,但思想是通用的。

4.1 定义数据结构

/*串口帧发送结构体*/  
typedef struct 
{
  
    uint16_t send_sum_len;          //要发送的帧数据长度  
    uint8_t  send_cur_len;          //当前已经发送的数据长度  
    uint8_t  send_flag;             //是否发送标志  
    uint8_t * send_data;            //指向要发送的数据缓冲区  
}uart_send_struct;  

4.2 定时处理函数

/** 
* @brief    定时发送函数,在定时器中断中调用,不使用发送中断的情况下减少发送等待 
* @param    UARTx:指向硬件串口寄存器基地址 
* @param    p:指向串口帧发送结构体变量 
*/
  
#define FARME_SEND_FALG 0x5A          
#define SEND_DATA_NUM   12  
static void uart_send_com(LPC_UART_TypeDef *UARTx,uart_send_struct *p)  
{  
    uint32_t i;  
    uint32_t tmp32;  
      
    if(UARTx->LSR &(0x01<<6))                      //发送为空  
    {         
        if(p->send_flag==FARME_SEND_FALG)  
        {                          
            RS485ClrDE;                             // 置485为发送状态  
              
            tmp32=p->send_sum_len-p->send_cur_len;  
            if(tmp32>SEND_DATA_NUM)                 //向发送FIFO填充字节数据  
            {  
                for(i=0;i                {  
                    UARTx->THR=p->send_data[p->send_cur_len++];  
                }  
            }  
            else  
            {  
                for(i=0;i                {  
                    UARTx->THR=p->send_data[p->send_cur_len++];  
                }  
                p->send_flag=0;                      
            }  
        }  
        else  
        {  
            RS485SetDE;  
        }  
    }  
}  
其中,RS485ClrDE为宏定义,设置RS485为发送模式;RS485SetDE也为宏定义,设置RS485为接收模式。
使用例子:
定义数据结构体变量:
uart_send_struct uart0_send_str;
定义发送缓冲区:
uint8_t uart0_send_buf[UART0_SEND_LEN];
根据使用的硬件串口,对定时处理函数做二次封装:
void uart0_send_data(void)
{
 uart_send_com(LPC_UART0,&uart0_send_str);
}
将封装函数uart0_send_data();放入定时器中断处理函数中;
在需要发送数据的地方,设置串口帧发送结构体变量:
uart0_send_str.send_sum_len=data_len;      //data_len为要发送的数据长度
uart0_send_str.send_cur_len=0;             //固定为0
uart0_send_str.send_data=uart0_send_buf;   //绑定发送缓冲区
uart0_send_str.send_flag=FARME_SEND_FALG;  //设置发送标志

5. 总结

本文主要讨论了一种高效的串口数据收发方法,并给出了具体的代码实现。在当前处理器任务不断增加的情况下,提供了一个占用资源少,可提高系统整体性能的新的思路。
版权声明:本文来源网络,免费传达知识,版权归原作者所有。如涉及作品版权问题,请联系我进行删除。

‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧  END  ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

关注我的微信公众号,回复“加群”按规则加入技术交流群。


点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看。

李肖遥 公众号“技术让梦想更伟大”,作者:李肖遥,专注嵌入式,只推荐适合你的博文,干货,技术心得,与君共勉。
评论
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 89浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 110浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 178浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 72浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 171浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 122浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 71浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 48浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 76浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 97浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 82浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 93浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 166浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 193浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦