这回是真正的理解红黑树了(Linux内核里大量用到的数据结构,且常被二货问到)

C语言与CPP编程 2023-12-20 09:30

击上方“C语言与CPP编程”,选择“关注/置顶/星标公众号

干货福利,第一时间送达!

最近有小伙伴说没有收到当天的文章推送,这是因为微信改了推送机制,有一部分小伙伴刷不到当天的文章,一些比较实用的知识和信息,错过了就是错过了,建议大家加个星标⭐️,就能第一时间收到推送。

小伙伴们大家好,我是飞宇。

今天分享一些干的不能再干的干货-红黑树,作为一种数据结构,红黑树可谓不算朴素,因为各种宣传让它过于神秘,网上搜罗了一大堆的关于红黑树的文章,不外乎千篇一律,介绍概念,分析性能,贴上代码,然后给上罪恶的一句话,它最坏情况怎么怎么地...


我们想,一棵二叉树怎么就是最坏情况,那就是它退化为一个链表,这样查找就成了遍历。问题是,平衡二叉树怎么会退回链表!它是怎么保持平衡的?能不能简单地阐述?当然可以!一般的讲述红黑树的资料都是直接给出黑节点相同,红节点不连续等来作为一个足够硬但是又不是太硬的约束来保证树的平衡,但事实上,它还有更加简单的理解方式。

1.查找-在高度不在宽度

对于查找而言,如果一棵二叉树的高度是N,那么最多可以在N步内完成查找,这个不用解释,解释这个有点喧宾夺主了。这就是说,树的高度要尽可能矮。考虑到查找的平均情况,叶子节点到根节点的距离不能差别太大。

2.二叉树的不平衡根源

一棵树在查找看来变得不平衡是因为子树的高度相差很大。

二叉树为什么会这么容易变得不平衡,很简单,因为它只有二叉,左右均有50%的概率,那么插入N个节点全部都是左节点或者右节点的概率就是50%的N次方,如果是8叉树,那么这个概率就是12.5%的N次方,哪个概率大,自己算。

3.多叉树-宽度换高度

在第1节以及第2节,我们已经知道,树的宽度越大,高度越小,这样查询起来越快,Cisco路由器里不是有256叉乃至1024叉树吗?但是这样真的很好吗?对于稀疏节点,这样会严重消耗内存。

如果我们考虑CPU的MMU系统,就会知道,二级页表和三级页表的区别就在于对付稀疏地址空间的效果不同。

4.权衡-2,3树

我们发现,道生一,一生二,二叉树是一个完美的开始,但是我们发现它特别容易倾斜,倾斜的时候别触摸。我们也不能一下子就上256叉树,即使那样在海量节点情况下也抗不住,因此这种盲目宽度换高度的方案没有可扩展性。我们需要找出一种动态的机制,让一棵树动态调整保持平衡。

为了更加容易找出这个机制,让它更加容易现形,暂时不断增加树的宽度,如果增加到3叉树还找不到方案,就增加到4叉树...我们说的N叉树并不是说一个节点一定有N个子节点,而是说它最多有N个子节点。

迄今为止,以前都是我自己形而上的观点,几年前我的想法就到此为止,原因在于那段时间特别郁闷,就想找出些技术上的形而上思想,可是突然自己变好了,就没有继续下去。幸运的是,我现在发现确实有这么一个方案,而红黑树就是从3叉树回退过去的。

让我高兴的是,我的思路并没有跑偏。

5.2-3树的平衡变换

如果是二叉树,那么你插入一个节点,你只有最多1次机会保持子树的高度不变,如果是一个三叉树,那么就有2次机会。现在开始,我们为二叉树添了一叉,变成了三叉树。

二叉树的时候,一个节点有两个分支,三叉树的时候,有三个分支。一个点可以将区间分为两个部分区域,要想将一个区间分为三个部分区域,就需要两个点,因此三叉的情形下,节点存储的是两个点而不是一个,如下图所示:

现在考虑插入一个新节点,这个2-3树怎么保持平衡。非常简单,我们知道,插入的位置一定是叶子,假设当前的树是平衡的,现在分两种情况:

1).插入的新叶子节点的父节点是一个二叉节点

这种情况最简单,二叉节点变三叉节点即可,如下图所示:

2).插入的新叶子节点的父节点是一个三叉节点

这种情况比较复杂。树总是要长高的,保持平衡的方式就是同时长高,而这是不可能的,插入一个节点只能让该节点所在的子树长高。然而,如果能将这个信息上升到根部,在根部长高,就实现了“同时长高”!
还是循着上面的那个思路,我们继续增加树叉的数量,我们把它增加到4!新节点的插入如下图所示:


很遗憾,没有完成任务,但是最终我们提出了两个问题,只要解决了这两个问题,所有问题就解决了。

解决这两个问题,无疑都要牵扯到节点P的父节点以及再往上的节点,有两种可能:


可能性1:P的父节点PP是一个二叉节点
这个太爽,我们直接把P以及它的子树全部提到PP节点即可,类似B插入的情景,如下图所示:


问题2解决。

可能性2:P的父节点PP是一个三叉节点
这就有点不好办了,不过有最后一击!不管怎样先把P节点以及其子节点全部上提到PP,保持最底部的平衡性,这样就可以递归解决了,此时我们又一次遇到了往一个三叉节点里面插入子节点的问题了,为了不增加树高,唯一的方式就是膨胀成一个四叉节点-宽度换高度。如下图所示:


最后,我们发现,在递归的过程中,要么碰到了P..P是个二叉节点,此时按照问题2的解决方式将当前节点的值直接提到P...P中,其子树降低一个高度,抵消增加的高度,平衡保持,递归结束,要么递归到了根节点,此时只需要一个分裂操作即可完美结束!


6.演进到红黑树

很显然,通过上面的描述,我们似乎找到了一个使树保持平衡的方案,而且是相当完美的平衡!核心就是宽度和高度之间的博弈。我们总是可以用一个宽度抵消一层高度,整个过程就是一次或者多次的一加一减,最终的结果还是0!
然而,这也不再是二叉树了,有的节点变成了三叉,并且保存了两个值,该两个值将区间分割成了三部分,是为三叉!因此在使用上就不如二叉树方便,比较操作复杂化了。事实上,将三叉节点处理成二叉节点,这棵树就成了红黑树!怎么处理呢?很简单!如下图所示:


看到了吧,红色节点就是从2-3树中分出来的,为了维持一棵二叉树而不是2-3树,必须将三叉节点变成二叉节点,这是一个宽度换高度得回退,即高度换宽度,当然代价就是不再完美平衡。

按照以上的这个变换,你自己试试看,可以变出两个连续的红节点吗?NO!还在纠结红黑树的性质概念吗?看了它的演进,你会发现,很多红黑树的复杂概念和让人没有头绪的性能都是自然而然的。下面我们来看一下它的最坏情况是什么。

还是以2-3树分析,如果在一棵2-3树中,最左边路径上的节点全部是三叉节点,而最右边路径上的节点都是二叉节点,那么把它变换成二叉红黑树之后,就会发现最左边的路径上是红黑间隔的节点,而最右边的路径上全部是黑节点,它们的高度差接近2倍。出现这样的情况是令人悲哀的,但是也是极低概率的。

红黑树的所有包括旋转等操作,都可以映射到2-3树中,而我们对2-3树以及高度和宽度之间的博弈已经足够理解了。请再次去理解红黑树吧,再看看它的性质和概念,together with左旋和右旋,是不是有一种新的体会呢?

EOF

一个我十分佩服的朋友阿秀开发了一个互联网大厂面试真题记录网站,支持按照行业公司岗位科目考察时间等查看面试真题,有意者欢迎扫码下方二维码适用~

你好,我是飞宇,本硕均于某中流985 CS就读,先后于百度搜索以及字节跳动电商等部门担任Linux C/C++后端研发工程师。

同时,我也是知乎博主@韩飞宇,日常分享C/C++、计算机学习经验、工作体会,欢迎点击此处查看我以前的学习笔记&经验&分享的资源。

我组建了一些社群一起交流,群里有大牛也有小白,如果你有意可以一起进群交流。

欢迎你添加我的微信,我拉你进技术交流群。此外,我也会经常在微信上分享一些计算机学习经验以及工作体验,还有一些内推机会

加个微信,打开另一扇窗

C语言与CPP编程 C语言/C++开发,C语言/C++基础知识,C语言/C++学习路线,C语言/C++进阶,数据结构;算法;python;计算机基础等
评论
  • 一、行业背景与需求痛点智能电子指纹锁作为智能家居的核心入口,近年来市场规模持续增长,用户对产品的功能性、安全性和设计紧凑性提出更高要求:极致空间利用率:锁体内部PCB空间有限,需高度集成化设计。语音交互需求:操作引导(如指纹识别状态、低电量提醒)、安全告警(防撬、试错报警)等语音反馈。智能化扩展能力:集成传感器以增强安全性(如温度监测、防撬检测)和用户体验。成本与可靠性平衡:在复杂环境下确保低功耗、高稳定性,同时控制硬件成本。WTV380-P(QFN32)语音芯片凭借4mm×4mm超小封装、多传
    广州唯创电子 2025-03-13 09:24 41浏览
  • 文/Leon编辑/cc孙聪颖作为全球AI领域的黑马,DeepSeek成功搅乱了中国AI大模型市场的格局。科技大厂们选择合作,接入其模型疯抢用户;而AI独角兽们则陷入两难境地,上演了“Do Or Die”的抉择。其中,有着“大模型六小虎”之称的六家AI独角兽公司(智谱AI、百川智能、月之暗面、MiniMax、阶跃星辰及零一万物),纷纷开始转型:2025年伊始,李开复的零一万物宣布转型,不再追逐超大模型,而是聚焦AI商业化应用;紧接着,消息称百川智能放弃B端金融市场,聚焦AI医疗;月之暗面开始削减K
    华尔街科技眼 2025-03-12 17:37 146浏览
  •        随着人工智能算力集群的爆发式增长,以及5.5G/6G通信技术的演进,网络数据传输速率的需求正以每年30%的速度递增。万兆以太网(10G Base-T)作为支撑下一代数据中心、高端交换机的核心组件,其性能直接决定了网络设备的稳定性与效率。然而,万兆网络变压器的技术门槛极高:回波损耗需低于-20dB(比千兆产品严格30%),耐压值需突破1500V(传统产品仅为1000V),且需在高频信号下抑制电磁干扰。全球仅有6家企业具备规模化量产能力,而美信科
    中科领创 2025-03-13 11:24 40浏览
  • 在追求更快、更稳的无线通信路上,传统射频架构深陷带宽-功耗-成本的“不可能三角”:带宽每翻倍,系统复杂度与功耗增幅远超线性增长。传统方案通过“分立式功放+多级变频链路+JESD204B 接口”的组合试图平衡性能与成本,却难以满足实时性严苛的超大规模 MIMO 通信等场景需求。在此背景下,AXW49 射频开发板以“直采+异构”重构射频范式:基于 AMD Zynq UltraScale+™ RFSoC Gen3XCZU49DR 芯片的 16 通道 14 位 2.5GSPS ADC 与 16
    ALINX 2025-03-13 09:27 32浏览
  • 前言在快速迭代的科技浪潮中,汽车电子技术的飞速发展不仅重塑了行业的面貌,也对测试工具提出了更高的挑战与要求。作为汽车电子测试领域的先锋,TPT软件始终致力于为用户提供高效、精准、可靠的测试解决方案。新思科技出品的TPT软件迎来了又一次重大更新,最新版本TPT 2024.12将进一步满足汽车行业日益增长的测试需求,推动汽车电子技术的持续革新。基于当前汽车客户的实际需求与痛点,结合最新的技术趋势,对TPT软件进行了全面的优化与升级。从模型故障注入测试到服务器函数替代C代码函数,从更准确的需求链接到P
    北汇信息 2025-03-13 14:43 40浏览
  • 文/杜杰编辑/cc孙聪颖‍主打影像功能的小米15 Ultra手机,成为2025开年的第一款旗舰机型。从发布节奏上来看,小米历代Ultra机型,几乎都选择在开年发布,远远早于其他厂商秋季主力机型的发布时间。这毫无疑问会掀起“Ultra旗舰大战”,今年影像手机将再次被卷上新高度。无意臆断小米是否有意“领跑”一场“军备竞赛”,但各种复杂的情绪难以掩盖。岁岁年年机不同,但将2-3年内记忆中那些关于旗舰机的发布会拼凑起来,会发现,包括小米在内,旗舰机的革新点,除了摄影参数的不同,似乎没什么明显变化。贵为旗
    华尔街科技眼 2025-03-13 12:30 60浏览
  • DeepSeek自成立之初就散发着大胆创新的气息。明明核心开发团队只有一百多人,却能以惊人的效率实现许多大厂望尘莫及的技术成果,原因不仅在于资金或硬件,而是在于扁平架构携手塑造的蜂窝创新生态。创办人梁文锋多次强调,与其与大厂竞争一时的人才风潮,不如全力培养自家的优质员工,形成不可替代的内部生态。正因这样,他对DeepSeek内部人才体系有着一套别具一格的见解。他十分重视中式教育价值,因而DeepSeek团队几乎清一色都是中国式学霸。许多人来自北大清华,或者在各种数据比赛中多次获奖,可谓百里挑一。
    优思学院 2025-03-13 12:15 47浏览
  • 在海洋监测领域,基于无人艇能够实现高效、实时、自动化的海洋数据采集,从而为海洋环境保护、资源开发等提供有力支持。其中,无人艇的控制算法训练往往需要大量高质量的数据支持。然而,海洋数据采集也面临数据噪声和误差、数据融合与协同和复杂海洋环境适应等诸多挑战,制约着无人艇技术的发展。针对这些挑战,我们探索并推出一套基于多传感器融合的海洋数据采集系统,能够高效地采集和处理海洋环境中的多维度数据,为无人艇的自主航行和控制算法训练提供高质量的数据支持。一、方案架构无人艇要在复杂海上环境中实现自主导航,尤其是完
    康谋 2025-03-13 09:53 44浏览
  • 一、行业背景与用户需求随着健康消费升级,智能眼部按摩仪逐渐成为缓解眼疲劳、改善睡眠的热门产品。用户对这类设备的需求不再局限于基础按摩功能,而是追求更智能化、人性化的体验,例如:语音交互:实时反馈按摩模式、操作提示、安全提醒。环境感知:通过传感器检测佩戴状态、温度、压力等,提升安全性与舒适度。低功耗长续航:适应便携场景,延长设备使用时间。高性价比方案:在控制成本的同时实现功能多样化。针对这些需求,WTV380-8S语音芯片凭借其高性能、多传感器扩展能力及超高性价比,成为眼部按摩仪智能化升级的理想选
    广州唯创电子 2025-03-13 09:26 33浏览
  • 本文介绍Android系统主板应用配置默认获取管理所有文件权限方法,基于触觉智能SBC3588行业主板演示,搭载了瑞芯微RK3588芯片,八核处理器,6T高算力NPU;音视频接口、通信接口等各类接口一应俱全,支持安卓Android、Linux、开源鸿蒙OpenHarmony、银河麒麟Kylin等操作系统。配置前提在配置前,建议先将应用配置成系统应用,不然配置后系统每次重启后都会弹窗提示是否获取权限。应用配置成系统应用,可参考以下链接方法:瑞芯微开发板/主板Android系统APK签名文件使用方法
    Industio_触觉智能 2025-03-12 14:34 54浏览
  • 引言汽车行业正经历一场巨变。随着电动汽车、高级驾驶辅助系统(ADAS)和自动驾驶技术的普及,电子元件面临的要求从未如此严格。在这些复杂系统的核心,存在着一个看似简单却至关重要的元件——精密电阻。贞光科技代理品牌光颉科技的电阻选型过程,特别是在精度要求高达 0.01% 的薄膜和厚膜技术之间的选择,已成为全球汽车工程师的关键决策点。当几毫欧姆的差异可能影响传感器的灵敏度或控制系统的精确性时,选择正确的电阻不仅仅是满足规格的问题——它关系到车辆在极端条件下的安全性、可靠性和性能。在这份全面指南中,我们
    贞光科技 2025-03-12 17:25 92浏览
  • 2025年,科技浪潮汹涌澎湃的当下,智能数字化变革正进行得如火如荼,从去年二季度开始,触觉智能RK3562核心板上市以来,受到了火爆的关注,上百家客户选用了此方案,也获得了众多的好评与认可,为客户的降本增效提供了广阔的空间。随着原厂的更新,功能也迎来了一波重大的更新,无论是商业级(RK3562)还是工业级(RK3562J),都可支持NPU和2×CAN,不再二选一。我们触觉智能做了一个艰难又大胆的决定,为大家带来两大重磅福利,请继续往下看~福利一:RK3562核心板149元特惠再续,支持2×CAN
    Industio_触觉智能 2025-03-12 14:45 27浏览
  • 北京时间3月11日,国内领先的二手消费电子产品交易和服务平台万物新生(爱回收)集团(纽交所股票代码:RERE)发布2024财年第四季度和全年业绩报告。财报显示,2024年第四季度万物新生集团总收入48.5亿元,超出业绩指引,同比增长25.2%。单季non-GAAP经营利润1.3亿元(non-GAAP口径,即经调整口径,均不含员工股权激励费用、无形资产摊销及因收购产生的递延成本,下同),并汇报创历史新高的GAAP净利润7742万元,同比增长近27倍。总览全年,万物新生总收入同比增长25.9%达到1
    华尔街科技眼 2025-03-13 12:23 48浏览
  • 曾经听过一个“隐形经理”的故事:有家公司,新人进来后,会惊讶地发现老板几乎从不在办公室。可大家依旧各司其职,还能在关键时刻自发协作,把项目完成得滴水不漏。新员工起初以为老板是“放羊式”管理,结果去茶水间和老员工聊过才发现,这位看似“隐形”的管理者其实“无处不在”,他提前铺好了企业文化、制度和激励机制,让一切运行自如。我的观点很简单:管理者的最高境界就是——“无为而治”。也就是说,你的存在感不需要每天都凸显,但你的思路、愿景、机制早已渗透到组织血液里。为什么呢?因为真正高明的管理,不在于事必躬亲,
    优思学院 2025-03-12 18:24 81浏览
  • 本文介绍OpenHarmony4.1系统开发板,出现打不开WiFi和蓝牙的问题排查和解决方法。触觉智能Purple Pi OH鸿蒙开发板演示,搭载了瑞芯微RK3566四核处理器,1TOPS算力NPU;Laval鸿蒙社区推荐并通过了开源鸿蒙XTS认证,成功适配OpenHarmony3.2、4.0、4.1、5.0 Release系统,SDK源码全开放!WiFi打不开缺少WiFi固件在WiFi打不开时我们可以通过使用串口工具查看WiFi打印信息:这条log主要说明了打开固件文件失败,说明了在/vend
    Industio_触觉智能 2025-03-12 14:32 53浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦