智能计算中心:创新发展指南(技术篇)

智能计算芯世界 2023-12-19 07:51

智算中心建设通过领先的体系架构设计,以算力基建化为主体、以算法基建化为引领、以服务智件化为依托,以设施绿色化为支撑,从基建、硬件、软件、算法、服务等全环节开展关键技术落地与应用。

智算中心的发展基于最新人工智能理论和领先的人工智能计算架构,算力技术与算法模型是其中的核心关键,算力技术以AI芯片、AI服务器、AI集群为载体,而当前算法模型的发展趋势以AI大模型为代表。

下载链接:
2023智算中心发展创新指南
小米澎湃OS技术白皮书
算力租赁深度研究报告:大模型发展的关键引擎,看好AI算力高景气持续
冷板液冷标准化及技术优化白皮书(2023)
2023智能算力发展白皮书
谷歌大模型Gemini正式发布,全球AI赛道或迎加速催化
人形机器人深度报告:海内外代表企业纵览及核心部件分析
人工智能行业:2023年度AI设计实践报告
智算产业发展白皮书(2023)
谷歌发布原生多模态Gemini及新一代TPU系统cloud TPU v5P
《AI算力租赁行业相关报告合集》
1、AI算力租赁行业研究框架:时势造英雄,宜谋定而后动 2、算力租赁订单与合同的持续落地与收入体系 3、算力租赁盈利的简单测算 4、在拓AI算力客户,算力租赁商业模式逐渐清晰 5、2023年度中国租赁行业调查报告
AI视觉赋能智造白皮书

在此基础上,以智算中心操作系统作为智算中心的“神经中枢”,对算力资源池进行高效管理和智能调度,使智算中心更好地对外提供算力、数据和算法等服务,支撑各类智慧应用场景落地。除此之外,软件生态是智算中心“好用、用好”的关键支撑。

1.AI芯片

基于AI芯片的加速计算是当前AI计算的主流模式。AI芯片通过和AI算法的协同设计来满足AI计算对算力的超高需求。当前主流的AI加速计算主要是采用CPU系统搭载GPU、FPGA、ASIC等异构加速芯片。

AI计算加速芯片发端于GPU芯片,GPU芯片中原本为图形计算设计的大量算术逻辑单元(ALU)可对以张量计算为主的深度学习计算提供很好的加速效果。随着GPU芯片在AI计算加速中的应用逐步深入,GPU芯片本身也根据AI计算的特点,进行了针对性的创新设计,如张量计算单元、TF32/BF16数值精度、Transformer引擎(Transformer Engine)等。

近年来,国产AI加速芯片厂商持续发力,在该领域取得了快速进展,相关产品陆续发布,覆盖了AI推理和AI训练需求,其中既有基于通用GPU架构的芯片,也有基于ASIC架构的芯片,另外也出现了类脑架构芯片,总体上呈现出多元化的发展趋势。但是,当前国产AI芯片在产品性能和软件生态等方面与国际领先水平还存在差距,亟待进一步完善加强。总体而言,国产AI芯片正在努力从“可用”走向“好用”。

2.AI服务器

AI服务器是智算中心的算力机组。当前AI服务器主要采用CPU+AI加速芯片的异构架构,通过集成多颗AI加速芯片实现超高计算性能。

为满足各领域场景和复杂的AI模型的计算需求,AI服务器对计算芯片间互联、扩展性有极高要求。AI服务器内基于特定协议进行多加速器间高速互联通信已成为高端AI训练服务器的标准架构。目前业界以NVLink和OAM两种高速互联架构为主,其中NVLink是NVIDIA开发并推出的一种私有通信协议,其采用点对点结构、串列传输,可以达到数百GB/s的P2P互联带宽,极大地提升了模型并行训练的效率和性能。OAM是国际开放计算组织OCP定义的一种开放的、用于跨AI加速器间的高速通信互联协议,卡间互联聚合带宽可高达896GB/s。浪潮信息基于开放OAM架构研发的AI服务器NF5498,率先完成与国际和国内多家AI芯片产品的开发适配,并已在多个智算中心实现大规模落地部署。

3.AI集群

大模型参数量和训练数据复杂性快速增长,对智算系统提出大规模算力扩展需求。通过充分考虑大模型分布式训练对于计算、网络和存储的需求特点,可以设计构建高性能可扩展、高速互联、存算平衡的AI集群来满足尖端的AI计算需求。

AI集群采用模块化方法构建,可以实现大规模的算力扩展。AI集群的基本算力单元是AI服务器。数十台AI服务器可以组成单个POD计算模组,POD内部通过多块支持RDMA技术的高速网卡连接。在此基础上以POD计算模组为单位实现横向扩展,规模可多达数千节点以上,从而实现更高性能的AI集群。

AI集群的构建主要采用低延迟、高带宽的网络互连。为了满足大模型训练常用的数据并行、模型并行、流水线并行等混合并行策略的通信需求,需要为芯片间和节点间提供低延迟、高带宽的互联。另外,还要针对大模型的并行训练算法通信模式做出相应的组网拓扑上的优化,比如对于深度学习常用的全局梯度归约通信操作,可以使用全局环状网络设计,配置多块高速网卡,实现跨AI服务器节点的AI芯片间RDMA互联,消除混合并行算法的计算瓶颈。

AI集群的构建需要配置面向AI优化的高速存储。通过配置高性能、高扩展、多层级的智能存储,为各种数据访问需求提供优化性能。智能存储具备随需扩展功能,实现高IOPS处理能力,支持RDMA技术,同时实现高聚合带宽。

4.AI大模型

超大规模智能模型,简称大模型,是近年兴起的一种新的人工智能计算范式。和传统AI模型相比,大模型的训练使用了更多的数据,具有更好的泛化性,可以应用到更广泛的下游任务中。按照应用场景划分,AI大模型主要包括语言大模型、视觉大模型和多模态大模型等。

自然语言处理是首个应用大模型的领域,BERT是大模型的早期代表。随着大模型在自然语言的理解和生成领域成功应用,推动了语言大模型向更大的模型参数规模和更大训练数据规模的方向发展。当前,语言大模型的单体模型参数已经达到千亿级别,训练数据集规模也达到了TB级别,训练所需计算资源超过1,000 PetaFlop/s-day(PD)。业界典型的自然语言大模型有GPT-3、源、悟道和文心等。自然语言大模型已经广泛应用于个人知识管理、舆情检测、商业报告生成、金融反欺诈、智能客服、虚拟数字人等场景,同时也出现了一系列的创新应用场景,如剧本杀、反网络诈骗、公文写作等。

随着大模型技术在语言、视觉等多个领域应用,融合多个模态的多模态大模型也逐渐成为了业界关注的重点。基于多模态大模型的以文生图技术也迅速发展,代表性模型有DALLE-2 和 Stable Diffusion 等。由于多模态大模型的快速发展,AI 内容生成(AI Generated Content,AIGC)已成为下一个 AI 发展的重点领域。

5.智算OS

智算OS,即智算中心操作系统,是以智算服务为对象,对智算中心基础设施资源池进行高效管理和智能调度的产品方案,可以使智算中心更好地对外提供算力、数据、算法智件等服务,有效降低算力使用门槛,提升资源调度效率,支撑各类智慧应用场景落地,是智算中心的“中枢神经”。

智算OS主要由三层架构构成,分别为基础设施层、平台服务层、业务系统层。基础设施层主要实现将异构算力、数据存储、框架模型等转化为有效的算力与服务资源,算力资源池能够聚合并进行标准化和细粒度切分,以满足上层不同类型智能应用对算力的多元化需求,并通过异构资源管理和调度技术,提升可同时支撑的智算业务规模。平台服务层主要提供AI训练与推理服务、数据治理服务、运营运维服务等,并通过智算OS实现自动化、智能化,有效摆脱人力束缚,促进算力高效释放并转化为生产力。业务系统层是面向用户端的统一服务入口,向下整合各层级核心功能,为用户提供多元化、高质量的智算服务,满足生产中不同阶段、不同场景的智算需求。

6.软件生态

基于业界主流、开源、开放的软件生态建设智算中心,是智算中心能够满足前沿AI计算需求、提升AI创新和生产效率、丰富行业AI应用、促进AI产业快速发展的主要前提。

深度学习的加速计算始于GPU,构建于GPU之上的CUDA软件栈为深度学习的算法开发提供了极大的便利。CUDA软件栈为深度学习的应用开发和计算加速提供了丰富的底层支撑,如张量和卷积计算加速、芯片互联通信加速、数据预处理加速、模型低精度推理加速等。在此基础上,学术界和工业界已经构建庞大的开源、开放、共享的AI软件生态,有力促进和加速全球AI技术与应用的蓬勃发展。

本指南“2023智算中心发展创新指南”在智算中心总体架构的基础上,聚焦智算中心建设与应用中涉及的关键技术,进一步提出智算中心建设架构。智算中心建设架构由四大关键环节组成,分别是算力基建化、算法基建化、服务智件化、设施绿色化,“四化”相互支撑、相互协调,共同构建起智算中心高效运行体系。

同时,在总体架构三项服务、三项目标的基础上,进一步拓展丰富智算中心的功能和目标,实现对外提供数据服务、算力服务、算法服务、生态服务四大服务,支撑达成AI产业化、产业AI化、治理智能化、产业集群化四大目标。
下载链接:
《HotChips 2023及历年技术合集(汇总)》
1、HotChips 2023:开场闭幕总结
2、HotChips 2023:FPGAs技术专题
3、HotChips 2023:芯片互联技术专题
4、HotChips 2023:ML训练/推理技术专题
5、HotChips 2023:ML技术专题
6、HotChips 2023:CPU技术专题(1)
7、HotChips 2023:CPU技术专题(2)
8、HotChips 2023:UCIe技术专题
9、HotChips 2023:关键技术总结合集
10、HotChips历年技术合集

2023年液冷服务器词条报告

液冷技术要点汇总

《数据中心液冷技术合集(2023)》

中国数据中心液冷白皮书
液冷技术专题
400+份重磅ChatGPT专业报告(合集)
广西鲲鹏计算产业发展白皮书(2023年)
2023 OCP峰会—Server:Open Chiplet Economy
2023 OCP峰会:服务器DC-MHS合集
2023 OCP峰会:服务器技术合集
2023 OCP 峰会服务器专题技术合集
2023年服务器技术白皮书合集
高性能计算并行算法设计合集
《AI PC产业技术分析合集》
1、AI PC:深入变革PC产业(2023) 
2、专题报告:展望AI PC的未来
2023年个人电脑PC 行业词条报告
端侧AI深度报告:2024·AI“下凡
2023年AI现状报告
国内可穿戴市场:机遇与挑战并存
并行计算硬件结构基础合集
存储器:让数字世界拥有记忆(2023)

2023年机架式服务器行业词条报告

《AI算力技术研究合集》

1、AI算力研究框架(2023) 

2、AI兴起,智能算力浪潮来袭 

3、深度拆解AI算力模型


本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料。




免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。


温馨提示:

请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。

智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论 (0)
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 90浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 111浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 89浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 69浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 140浏览
  • 一、磁场发生设备‌电磁铁‌:由铁芯和线圈组成,通过调节电流大小可产生3T以下的磁场,广泛应用于工业及实验室场景(如电磁起重机)。‌亥姆霍兹线圈‌:由一对平行共轴线圈组成,可在线圈间产生均匀磁场(几高斯至几百高斯),适用于物理实验中的磁场效应研究。‌螺线管‌:通过螺旋线圈产生长圆柱形均匀磁场,电流与磁场呈线性关系,常用于磁性材料研究及电子束聚焦。‌超导磁体‌:采用超导材料线圈,在低温下可产生3-20T的强磁场,用于核磁共振研究等高精度科研领域。‌多极电磁铁‌:支持四极、六极、八极等多极磁场,适用于
    锦正茂科技 2025-04-14 13:29 63浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 63浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 78浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 131浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 121浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 88浏览
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 114浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 87浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦