如何使用LTspice获得出色的EMC仿真结果

亚德诺半导体 2023-12-17 11:00

随着物联网互联设备和5G连接等技术创新成为我们日常生活的一部分,监管这些设备的电磁辐射并量化其EMI抗扰度的需求也随之增加。满足EMC合规目标通常是一项复杂的工作


本文将介绍如何通过开源LTspice仿真电路来回答以下关键问题:

(a) 我的系统能否通过EMC测试,或者是否需要增加缓解技术?

(b) 我的设计对外部环境噪声的抗扰度如何?


为何要使用LTspice进行EMC仿真?

针对EMC的设计应该尽可能遵循产品发布日程表,但事实往往并非如此,因为EMC问题和实验室测试可能将产品发布延迟数月。


通常,仿真侧重于电子设备的功能方面。但是,诸如 LTspice 之类简单的开源工具也可以用来仿真任何设备的EMC行为。由于许多人在家工作,并且EMC实验室的成本高昂(每天高达2000美元),因此准确的EMC仿真工具更显价值。花几个小时对EMC故障和电路修复情况进行仿真,有助于避免多次实验室测试迭代和昂贵的硬件重新设计。

为了发挥作用,EMC仿真工具需要尽可能准确。本系列文章会提供一些指南和LTspice EMC电路模型,这些模型经过仿真并与实际实验室测量结果非常吻合。


使用LTspice解决辐射和抗扰度问题

阅读本文后,您应该能够回答以下关键问题:

Q

我的系统是否有可能通过EMC测试?是否应该为共模电感、滤波电感或电容预留空间?


阅读本文后,您应该能够使用LTspice绘制降压转换器电源设计的差分和共模噪声图,并展示电路超过(失败)还是未超过(成功)传导辐射标准限值,如图1所示。


图1. 差分和共模噪声的LTspice图,附有传导辐射限值线


Q

是否需要线性稳压器来为敏感负载提供稳定的电压?


阅读本文后,基于设计容许的降压输出纹波电压电平,您应该能够使用LTspice了解降压转换器的输出端是否需要LDO稳压器。此外,本文还提供了一个可配置的电源抗扰度(PSRR)测试电路。


用于传感器的降压转换器

MEMS振动传感器通常被置于一个小型金属外壳中,其直径通常为20 mm至30 mm,高度为50 mm至60 mm。带有数字信号链的传感器通常由长电缆提供9 VDC至30 VDC电源,功耗低于300 mW。为了能放入这种小型外壳内,需要高效率、宽输入范围的微型电源解决方案。


LT8618、LT8618-3.3 和 LT8604 是紧凑型高速降压开关稳压器,非常适合MEMS传感器应用。LT8618和LT8618-3.3已有相应的LTspice模型。LT8618具有良好的稳压能力,提供非常低的输出纹波,其峰峰值小于10 mV。然而,输出电容组的寄生电阻和电感会增加这种纹波,导致降压电路产生有害的传导辐射。容性负载、降压稳压器的输出开关寄生效应以及PCB设计和传感器外壳之间的耦合电容,都可能引起寄生效应。


提取和使用寄生值

接下来介绍工程师如何使用 Würth REDEXPERT 从实际电容中提取ESL和ESR寄生值,并使用LTspice进行电路仿真。在许多系统的输入端和输出端,电容和电感的寄生效应对EMI性能起着重要作用。为了降低系统输出纹波,分离各种寄生贡献有助于用户做出最佳选择。


我们使用LTspice和Würth REDEXPERT流程来讨论降压转换器的传导辐射仿真,如图2所示。对于降压转换器,通常来说,输出纹波与信噪比(SNR)相关,而输入纹波与EMC性能密切相关。


图2. 使用LTspice进行传导辐射仿真的流程


概述图2所示的仿真方法之后,本文将使用 DC2822A LT8618演示板进行实际的实验室测量和仿真相关性分析。


使用Würth REDEXPERT数据的LTspice测试电路值

降压转换器的输出纹波电压是电容阻抗和电感电流的函数。为了获得更好的仿真精度,可以使用Würth REDEXPERT来选择4.7 µF输出电容(885012208040),并提取随频率变化的ESR和ESL。ESL和ESR有时会被加载到LTspice电容模型中,但快速检查将证明LTspice电容数据经常会忽略ESL。图3a和3b显示了两个等效电路:(a) 使用4.7 µF输出电容以及分立的ESL和ESR值;(b) 使用包含ESR和ESL参数的Würth电容。


图3. LTspice测试电路:(a) 使用4.7 μF电容以及分立的ESL和ESR值;(b) 使用包含ESR和ESL参数的Würth电容


REDEXPERT显示了许多元件的随频率而变化的阻抗,以帮助确定每个无源器件的关键寄生效应。这些寄生值稍后可以在LTspice模型中实现,从而能够单独评估其对总电压纹波的贡献。


如前所述,LT8618提供非常低的输出纹波,峰峰值小于10 mV。但是,当模拟容性负载和ESL的影响时,输出纹波电压为44 mV p-p。在频率范围内,电容ESL对噪声的贡献相当大,如图4的FFT图所示。


图4. FFT图显示了一个4.7 μF电容的纯电容、ESL和ESR各自对频谱的贡献


使用LTspice LISN电路评估降压输入端的EMI合规性

为了评估传导设置中的EMC合规性,大多数标准依赖于线路阻抗稳定网络(LISN)或人工电源网络(AMN)。这些器件具有类似的功能,位于电路电源和被测器件(DUT)——这里是降压转换器——之间。LISN/AMN由低通和高通滤波器组成。低通滤波器提供从低频电源(直流至几百赫兹)到DUT的路径。高通滤波器用于测量电源和返回电源线噪声。这些电压是在50 Ω电阻上测量,如图5和图6所示。在实际实验室中,该电压使用EMI接收器来测量。LTspice可用来探测噪声电压并绘制传导辐射测试频谱图。


图5. LISN置于电源和被测器件(DUT)之间


图6. LISN内部的共模和差模干扰的表示


传导辐射可分为两类:共模(CM)噪声和差模(DM)噪声。区分CM和DM噪声很重要,因为EMI缓解技术可能对CM噪声有效,但对DM噪声无效,反之亦然。由于V1和V2电压同时输出,因此在传导辐射测试中可以使用LISN来分离CM和DM噪声,如图6所示


DM噪声在电源线和返回线之间产生,而CM噪声是通过杂散电容CSTRAY在电源线和接地参考平面(例如铜测试台)之间产生。CSTRAY实际上模拟了降压转换器输出端的开关噪声寄生效应。


图6对应的LTspice LISN电路如图7所示。为了获得更高的仿真精度,使用L5和L6电感来模拟LISN电源引线到测试电路的电感。电阻R10模拟测试板开槽接地层的阻抗。图7还包括用于模拟CSTRAY的电容C10。电容C11模拟传感器PCB和传感器机械外壳之间的寄生电容。



图7. LTspice LISN电路、LT8618降压转换器和寄生建模


运行仿真时,应设置LTspice以帮助LISN电路更快达到稳定状态,因为启动条件选择错误可能导致长期持续振荡。


确保取消勾选"Start External DC Supply Voltages at Zero"(从零启动外部直流电源电压),并根据需要指定电路元件的初始条件(电压和电流)。


图8显示了CM和DM噪声,使用的是从LISN端子V1和V2测得的LTspice FTT图。为了再现图6所示的算术运算,对于DM噪声,V1和V2相减后乘以0.5;对于CM噪声,V1与V2相加,结果乘以0.5。


图8. DM噪声(黑色)和CM噪声(蓝色)的LTspice FFT图


在实验室中,传导辐射通常以dBµV为单位进行测量,而LTspice的默认单位为1 dbV。两者之间的关系为1 dbV = 120 dBµV。


因此,DM噪声(以dBµV为单位)的LTspice表达式为

CM噪声的表达式为


添加传导辐射限值线

LTspice FFT波形查看参数可以通过绘图设置文件进行编辑。使用LTspice FFT菜单,导航到"Save Plot Settings"(保存绘图设置)并点击保存。绘图设置文件可以使用文本编辑器打开,并且可以进行操作以添加EN 55022传导辐射限值线以及相关的EMC频率范围(10 kHz至30 MHz)和幅度(0 dBµV至120 dBµV)。


EN 55022传导辐射标准频率和幅度限值可以利用Excel进行操作,以提供正确的语法来复制和粘贴到LTspice绘图设置文件,如图9所示。线定义可以粘贴到绘图设置参数中,如图10所示。图10还显示了X频率和Y幅度参数。


图9. 生成正确的语法以复制并粘贴到LTspice绘图设置文件


图10. 添加传导辐射通过/失败线定义和频率/幅度刻度


图11显示了传导辐射限值线,以及降压电路的DM和CM传导辐射。电路在2.3MHz至30 MHz频段内未通过辐射测试。


图11. LTspice FFT图和EN 55022传导辐射限值线


解决降压转换器EMI

为了降低电路的DM噪声,可以在输入轨上放置一个ESL和ESR非常低的电容,例如C12 22 µF Würth 885012209006,如图12所示。


图12. 解决降压转换器辐射问题


为了降低CM噪声,可以从LTspice库中选择Würth共模扼流圈,例如250 µH 744235251(WE-CNSW 系列)。封装尺寸4.5 mm × 3.2 mm × 2.8 mm非常适合空间受限的MEMS传感器外壳。图13显示了问题解决后的降压转换器的FFT图。


图13. 解决降压转换器问题后的FFT图


使用DC2822A LT8618演示板的实际实验室测量和仿真相关性

本文为LTspice进行传导辐射仿真提供了指导。这些方法可用于任何降压转换器电路。现在我们将注意力转向使用DC2822A LT8618演示板的仿真和EMC实验室相关性,如图14所示。DC2822A演示板包括多个输入和输出电容,这些电容未包含在以前的仿真模型中(例如图7和图12)。图15中显示的LTspice模型包括这些电容,以及使用Würth REDEXPERT获得的电容ESL和ESR值。


图14. DC2822A LT8618演示板


图15. DC2822A演示板VIN配置对应的LTspice模型


DC2822A演示板包括两个电源输入:VIN和VEMI。VIN输入电源轨绕过了PCB上使用的铁氧体磁珠。图15 LTspice模型对应于演示板VIN配置。图16显示了LTspice仿真的FFT,共模辐射在2 MHz时略微超过传导辐射限值线。


图16. DC2822A VIN 配置对应的LTspice FFT图


为了减少仿真时间,并优化LTspice仿真与DC2822A演示板实验室测量的匹配度,相比之前的模型(图7和图12),我们对图15进行了以下更改:

  • 无需模拟外壳和PCB之间的100 pF电容,我们只为DC2822A演示板建模。

  • 从一开始就假设这个设计良好的PCB上的开关噪声可以忽略不计,之前,我们在图7和图12中估计了5 pF的开关噪声。

  • 忽略LISN和DC2822A演示板之间导线的非常小电感。

  • 添加1 kΩ电阻与50 µH LISN电感并联以减少仿真时间(缩短LISN建立时间)。


对图15电路进行上述改变之后,图17显示了LTspice仿真与EMC实验室中DC2822A演示板的实际测量的比较。LTspice仿真模型非常准确地预测到实际实验室辐射的主要峰值。


图17. DC2822A VIN配置,LTspice和实际EMC实验室辐射的比较


通过铁氧体磁珠(EMI滤波器)VEMI轨测量,DC2822A演示板轻松符合60 dBµV的传导辐射限值线。事实上,在较低频率时,DC2822A演示板只有30 dBµV至35 dBµV的辐射。


传导抗扰度

有线状态监控传感器具有严格的抗扰度要求。对于铁路、自动化和重工业(例如纸浆和纸张加工)的状态监控,振动传感器解决方案需要输出低于1 mV的噪声,以避免在数据采集/控制器处触发错误的振动水平。这意味着电源设计向测量电路(MEMS信号链)输出的噪声必须非常低(低输出纹波)。电源设计还必须不受耦合到电源电缆的噪声的影响(高PSRR)。


如前所示,由于非理想的容性负载和突发操作,LT8618可能有数十毫伏的输出纹波。对于MEMS传感器应用,LT8618的输出端需要一个超低噪声和高PSRR的LDO稳压器,例如 LT3042。


针对抗扰度(PSRR)的灵活仿真电路

图18所示的LTspice电路可用来仿真LT3042的PSRR。图18所示的时域瞬变模型是交流扫描方法的替代方法。这种时域模型比交流方法更灵活,甚至允许用户对开关稳压器的PSRR进行仿真。仿真电路频率扫描电压输入轨的变化,并模拟输出电压的相应变化。换句话说,仿真评估如下方程:PSRRLT3042 = 频率范围内(VIN变化)/(VOUT变化)。


图18. 在10 kHz至80 MHz范围内仿真LT3042 LDO稳压器的PSRR


图18含有几个强大的语句。.meas和.step语句的组合使用户能够在LDO输入端添加电压噪声源,并在频率范围内测量电压输入阶跃变化情况下的LDO PSRR。


.meas语句

允许用户在一个时间范围内测量信号的峰峰值并将其输出到SPICE错误日志。图18测量了输入和输出纹波,并计算测量数据的PSRR。所有这些都输出到SPICE错误日志中。


.step语句

在单次仿真运行中,.step命令可用于扫描变量的一系列值。图18中的.step语句在50 Hz至10 MHz范围内阶跃改变V2电压源正弦波。


C2输出电容初始电压可设置为3.3V,以加快建立(和仿真)时间。这是通过编辑电容属性来完成的,通过禁用LTspice中的"Start External DC Supply Voltage at 0 V"选项可以进一步加快速度。


使用SPICE错误日志

仿真完成后,右键单击其中一个窗口,选择查看并选择SPICE错误日志(或使用Ctrl+L热键)。SPICE错误日志包含.meas语句的数据点。


要绘制.meas数据图,请右键单击错误日志并选择绘制阶跃.meas数据,右键单击空白屏幕以选择"Add Trace"(添加迹线,或使用Ctrl+A)并选择PSRR。右键单击x轴,选中单选按钮以显示对数刻度。这将显示PSRR随频率的变化,如图19所示。


图19. 绘制LT3042 LDO稳压器的仿真PSRR图


原始LT3042数据手册曲线中的一些伪影不可见(约2 MHz),但整体形状和值与数据手册接近。


图20显示了频率范围内的输出电压纹波。在50 Hz至10 MHz范围内,它小于200 µV。在相同频率范围内,输入电压纹波为1 V p-p。LT3042为噪声敏感的MEMS解决方案提供了出色的PSRR和低噪声电源。


图20. 绘制LT3042仿真输出电压纹波随频率的变化图


使用SPICE错误日志的.meas方法可用来仿真许多其他参数,包括:

  • 开关稳压器的PSRR

  • PSRR、电压差与频率三者的关系

  • PSRR与旁路网络的关系

  • RMS输出纹波与直流输入的关系

  • 效率与元件值的关系


总结

本文提供了LTspice仿真电路和方法,用以绘制降压转换器电源设计的差分和共模噪声图。本文让用户能够绘制传导辐射限值线,并帮助预测EMC实验室故障。仿真方法通过实验室测量得到验证,与LT8618 DC2822A演示板实测结果匹配。


在LT8618降压转换器的输出端使用LT3042 LDO稳压器,可为MEMS传感器应用提供超低噪声、高PSRR解决方案。针对PSRR的灵活仿真电路表明结果与LT3042数据手册有良好的一致性。在50 Hz至10 MHz范围内,即使存在较大的1 V p-p输入电压噪声,LT3042的仿真输出纹波也小于200 µV。


查看往期内容↓↓↓

亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦