社区首页
博客
论坛
下载
文库
评测
芯语
研讨会
商城
EE直播间
芯视频
E聘
更多
社区
论坛
博客
下载
评测中心
面包芯语
问答
E币商城
社区活动
ASPENCORE学院
资讯
电子工程专辑
国际电子商情
电子技术设计
CEO专栏
eeTV
EE|Times全球联播
资源
EE直播间
在线研讨会
视频
白皮书
小测验
供应商资源
ASPENCORE Studio
活动
2021中国IC领袖峰会暨IC成就奖
工业4.0技术及应用峰会
第22届电源管理论坛
国际AIoT生态发展大会
更多活动预告
杂志与服务
免费订阅杂志
电子工程专辑电子杂志
电子技术设计电子杂志
国际电子商情电子杂志
登录|注册
帖子
博文
电子工程专辑
电子技术设计
国际电子商情
资料
白皮书
研讨会
芯语
文库
首页
热门
专栏作家
电子产业热词
CEO专栏
技术文库
科技头条
专栏入驻
登录
首页
专栏作家
CEO专栏
论坛
博客
E币商城
资讯
电子工程专辑
国际电子商情
电子技术设计
最佳压实密度对锂电池设计的影响及软包卷绕电池电化学和结构设计!
锂电联盟会长
2023-12-09 12:24
1599浏览
0评论
6点赞
汽车照明的秘密武器,竟然是……
AI数据中心过热?ST 10kW压缩机方案让液冷系统效能翻倍
点击左上角“锂电联盟会长”,即可关注!
锂电池在制作过程中,压实密度对电池性能有较大的影响。一般来说压实密度与极片比容量,效率,内阻,以及电池循环性能有密切的关系,找出最佳压实密度对电池设计非常重要。
一般来说,在材料允许的压实范围内,极片压实密度越大,电池的容量就能做的越高,所以压实密度也被看做材料能量密度的参考指标之一。但是
一味的追求高压实,不但替身不了电池的比容量,还会严重降低电池比容量和循环性能
。
图1
极片轧制生产线示意图
压实密度越大,材料颗粒之间的挤压程度会越大,极片的孔隙度就会越小,极片的吸收电解液的性能就会越差,电解液越难以浸润,那么直接的后果就的材料的比容量发挥较低,电池的保液能力较差,电池循环过程中极化就大,衰减就会较大,内阻增加也尤为明显
。因此
合适的正极压实密度可以增大电池的放电容量,减小内阻,减小极化损失,延长电池的循环寿命,提高锂离子电池的利用率
。在压实密度过大或过小时,不利于锂离子的嵌入嵌出。那么影响正极极片压实密度的压实密度有哪些呢?
影响压实密度的因素
影响压实密度的因素
影响正极极片压实密度的主要因素主要有以下四点:
①材料真密度
②材料形貌
③材料粒度分布
④极片工艺。
材料真密度
目前几种商业厂家的正极材料的真密度和目前所能达到的压实密度见表(表中所选三元材料为NCM111),可以看出,
几种材料的真密度:钴酸锂>三元材料>锰酸锂>磷酸铁锂
,这和压实密度的规律一致。需要指出的是,
不同组分三元材料的真密度随组分的变化而变化。
几种商业正极材料的真密度和压实密度范围
材料形貌
三元材料和钴酸锂的真密度差别并不大,从上表可以看出,NCM111和钴酸锂的真密度只差0.3g·cm
-3
,压实密度却比钴酸锂低0.5g·cm
-3
,甚至更高,导致这个结果的原因很多,但最主要的原因是钴酸锂和三元材料的形貌差别。
目前商业化的钴酸锂是一次颗粒,单晶很大,三元材料则为细小单晶的二次团聚体,如图所示。
从图中可看出
,几百nm的一次颗粒团聚成的三元材料二次球,本身就有很多空隙;而制备成极片后,球和球之间也会有大量的空隙。以上原因使三元材料的压实密度进一步降低。
钴酸锂和三元材料SEM图
材料粒度分布
等
径球在堆积时,球体和球体之间会有大量的空隙,若没有合适的小粒径球来填补这些空隙,堆积密度就会很低。所以合适的粒度分布能提高材料的压实密度
,而不合理的粒度分布则造成压实密度显著降低。
极片工艺
极片的面密度,黏结剂和导电剂的用量都会影响压实密度。常见导电剂和黏结剂的真密度见如表。从表中可以看出,
常见导电剂和黏结剂的真密度
材料的真密度对压实密度的影响是无法改变的,但从压实密度和真密度的对比中可以看出,三元材料的压实密度还有很大的提升空间。
如何提高压实密度
目前提高压实密度的方法主要从
材料形貌、材料粒度分布、极片工艺
三方面入手。例如将三元材料的形貌制备成和钴酸锂类似的大单晶;优化三元材料粒度分布;极片制作时使用导电性好的导电剂以降低导电剂用量,调浆过程高速分散,使导电剂和黏结剂均匀分散等等。
下面是从优化三元材料形貌和粒度方面来提升三元材料压实密度的实例
。
优化形貌
常见几种三元材料的形貌及其极片(辊压后)的SEM图如图所示。其中(a)、(c)、(e)为三种不同形貌的三元材料的SEM图,放大倍数相同。(b)、(d)、(f)分别为(a)、(c)、(e)的辊压后极片低倍SEM图。
(a)所示是最常见的三元材料形貌,即小单晶的二次团聚体,其辊压后的极片SEM图如(b)所示,二次颗粒之间有较大空隙,且部分二次颗粒已经被压碎,部分没有接触到黏结剂的小单晶已经脱落;(c)的形貌为一次单晶三元材料,但比(a)的单晶稍大一些,从其对应极片(d)可以看出,单晶颗粒之间有少量空隙,因为不存在二次颗粒破碎的问题,所以只要黏结剂分散均匀,便不存在单晶从极片脱落的问题;(e)虽然也是二次团聚体,但是单晶很大,单晶和单晶之间接触并不是很紧密,从其对应极片(f)可以看出,颗粒和颗粒之间的空隙很少,如果使用高速混合机来制备浆料,效果会更好。
图中(a)、(c)、(e)三种形貌的材料对应的压实密度结果对应(g)中的a、c、e。从图中可以看出,(a)形貌的材料压实密度最低,但和(c)的压实密度相差不多,(e)的压实密度比(a)和(c)的高很多,已经达到3.9g·cm
-3
。
不同形貌三元材料及其极片SEM图、压实密度对比
优化粒度分布
D
50
接近的材料,若D
10
、D
90
、D
min
、D
max
有差别,也会造成压实密度不同。粒度分布太窄或粒度分布太宽都会使材料压实密度降低。对于粒度分布的影响,有的电池厂家会对正极材料生产商提出要求,而有的电池厂家则通过混合不同粒度分布的产品来达到提高压实密度的目的,如图所示。
不同粒度分布的正极材料极片SEM图
过压
造成三元材料极片过压的原因有两种,一种是电池厂家为了追求电池的高能量密度导致极片过压,例·如将压实密度只有3.6g·cm
–3
左右的三元材料压至3.7g·cm
–3
甚至更高;另一种是材料厂家制程控制不严格,使不同批次三元材料的压实密度不一致,电池厂家未分析材料的具体情况,按照常规工艺参数制备极片时将极片过压。
过压后极片的SEM图
极片过压会造成电池容量降低,循环恶化,内阻增加等问题。首
先,极片过压会使球形三元材料大面积破碎,新产生的表面有很多脱离了二次球的一次小颗粒,它们要么因为没有接触到PVDF而从极片上掉落,要么因为没有接触到导电剂而使极片导电性能局部恶化。新表面的产生也使比表面增大,与电解液的接触面增大,副反应增加,从而造成电池性能降低,如电池气胀、循环衰减等。过压还会造成铝箔变形,极片脆片,容易折断,电池内阻增加。
另外,过压的极片中,材料颗粒之间的挤压程度过大,造成极片孔隙率低,极片吸收电解液的量也会降低,电解液难以渗透到极片内部,直接的后果就是材料的比容量发挥变差。保液能力差的电池,循环过程中极化很大,衰减很快,内阻增加明显。
极片是否过压可以通过观察极片是否脆片、做电镜查看材料是否被破碎、估算极片孔隙率等方法来判断。
其中极片孔隙率是判断极片吸液量、吸液速率的一项重要指标,对电池性能产生直接影响。
极片孔隙率是指极片辊压后内部孔隙的体积占辊压后极片总体积的百分率。极片孔隙率过低会降低电解液量对极片浸润速率,影响电池性能发挥,过高会降低电池能量密度,浪费有效空间。
不能为了追求能量密度而过度提高压实密度
。孔隙率的测试可以采用压汞法、氮吸附、吸液法、估算法等,压汞法为常用方法。吸液法具体操作步骤如下:裁取适量极片,并计量所述极片的质量m;计量所述极片的体积V;将所述极片放置到容器中,所述容器内设置有电解液或其他溶剂(溶剂密度为ρ),将所述极片完全浸泡,并浸泡一定时间;取出所述极片,放置于滤纸上,吸拭至恒重,计量所述极片的质量m
1
;根据公式
ε=(m
1
–m)/ρV×100%
,计算极片的孔隙率ε。估算法较为简单,根据材料的真密度与极片压实密度的差值可以估算极片的孔隙率。极片孔隙率计算方程式如
下:
极片孔隙率(%)=(混合物真密度–极片压实密度)/混合物真密度×100%
下表给出了三元材料和钴酸锂在不同压实密度下的孔隙率,数据由上式计算得出。下表的计算基础为:三元极片中包含95%的三元材料,3%导电剂,2%黏结剂(均为质量分数),三元材料的真密度为4.8g·cm
–3
,导电剂的密度为1.9g·cm–3左右,黏结剂的密度为1.78g·cm
–3
,那么混合物的真密度约为4.65g·cm
–3
。钴酸锂极片中包含95%的钴酸锂,3%导电剂,2%黏结剂,LiCoO
2
的真密度为5.1g·cm
–3
,导电剂的密度为1.9g·cm
–3
左右,黏结剂的密度为1.78g·cm
–3
,那么混合物的真密度约为4.94g·cm
–3
。
三元材料和钴酸锂在不同压实密度下的孔隙率典型值
圆柱电池极片长度计算方法
电池卷芯是一种阿基米德螺线,根据相关理论,卷芯的半径 r 和总的旋转角度ϕ关系可由下式计算:
当卷芯内核卷针半径为r0时,有:
其中,ϕ 是卷绕旋转总角度,r0 为卷芯内核卷针直径,螺线参数 a 计算方法为:
t是卷芯中基本组成单元的厚度,对于圆柱形电池,t相当于正极、负极极片的厚度和两层隔膜的厚度,如图1所示。
图1 卷芯中基本组成单元的厚度
根据阿基米德螺线理论,根据下方公式分别计算内核弧线长度和整体的弧线长度,两者差值为正极长度,有:
常见的圆柱电池外径、壳体厚度和壳体内部空间直径如下表所示。
其中,卷芯内核卷针直径主要由两个方面决定:(1)卷芯中间空间能够将底部极耳焊接到电池壳体内部;(2)涂层电极不会开裂的最小弯曲半径决定。
举例说明,对于特斯拉采用的21700电池,参数为:
正极极片厚度174μm;
负极极片厚度143μm;
隔膜厚度10μm;
卷芯基本单元厚度t= (174+143+10*2)μm=337μm;
螺线参数 a=t /2π =53.66μm。
卷芯内核卷针直径为2mm,内核中空部分旋转弧度 ϕ= r/a = 1 mm / 53.66 μm = 18.63,对应的圈数为 ϕ/2π=18.63/(2*3.14)=2.97;
壳体内部空间直径为20.4mm,考虑到卷芯膨胀空间,卷芯直径为19.4mm,则包含空心内核的旋转弧度 ϕ= r/a = (19.4/2) mm / 53.66 μm = 180.77,对应的圈数为ϕ/2π=180.77/(2*3.14)= 28.77;
则正极实际卷绕圈数为 28.77-2.97=25.8。
根据以下公式
内核中空部分旋转弧线长 l=9.4mm
包含空心内核的旋转弧线长 l=874.2mm
则正极实际长度为 874.2 – 9.4 = 864.8mm
理论计算的正极长度与实际测量值 865mm 吻合。
公式比较复杂,进一步进行简化。
公式中,ϕ一般都比较大,比如21700电池ϕ=180.77,简化1+ϕ^2≈ ϕ^2,而且ln(ϕ+√(1+ϕ^2)) ≈ ln(ϕ+ϕ) ≈ ln(2ϕ),其值为2~3,也忽略不计,则有
根据以上公式分别计算内核弧线长度和整体的弧线长度,两者差值约为为长度。因此,如图2所示,已知卷芯内核直径d,卷芯外径D,卷芯中基本组成单元的厚度t正极、负极极片的厚度和两层隔膜的厚度之和。
图2 卷芯示意图
极片长度的估算方法为:
还是以特斯拉采用的21700电池为例,
d=2mm
D=19.4mm
t=337μm
由公式计算极片长度L=867.8 mm
计算值与第一种方法所计算的864.8mm以及实际测量值865mm差别不大。
软包卷绕电池电化学和结构设计!
一、锂离子电池设计原则
1.1 安全
在产品设计中,必须尽可能的消除任何危害终端客户人身和财产安全的隐患。
1.2 客户需求
满足客户为第一准则,项目负责人必须经常与客户流通,了解其对产品的使用体验。
1.3 成本
在不影响客户使用效果的前提下,降低成本是对公司和客户负责的体现。
1.4 法规
产品必须遵守本国和产品消费国之相关法律法规。
二、电化学设计部分
2.1 正极配方
2.2 负极配方
2.3 面密度/克容量/压实密度设计
2.4 负极余量设计
负极容量余量:因为负极从开始形成SEI膜到循环的修复SEI等反应,需要不断消耗锂离子,所以负极需要设定一定的损耗余量。
2.5 电池容量设计
电池设计容量余量:因为操作、设备等原因,同一批次的电池容量会呈正态分布,为保证整个容量分布基本处于标称容量以上,需要设定设计余量。
2.6 电解液类型选择
根据客户不同的使用环境和习惯,电池有各种不同的分类,这些电池分类中使用的电解液主要特性也各不相同:
(1)高温型:
85度12h储存测试满足行业要求,用于有高温要求的GPS产品;
(2)普通型:
70度12h储存测试满足行业要求,放电平台比较高,用于MID产品;
(3)低成本型:
满足0.5C循环300周容量保持80%的要求,用于移动电源等低成本产品;
(
4)高电压电解液:
满足4.35V-4.40V使用,放电平台比要求较高,高电压电池产品;
(5)低温型:
-40度0.2C放电容量比大于50%,用于低温环境使用产品;
(6)高倍率型:
满足20C以上倍率放电要求,用于无人机、启动电源等产品。
2.7 电解液配方
(1)锂盐:
当前锂离子电池行业中主要采用LiPF6 作为锂盐,其浓度一般为0.8~1.2mol/L;
(2)溶剂:
一般为二元或三元组分,成分为EC/DEC/PC/EMC/DMC等,含量为90%~95%;
(3)添加剂:
分为成膜添加剂、防过充添加剂、低温添加剂、增强导电性添加剂,含量为5%~10%;
(4)参数要求:
密度:1.1~1.2g/cm3
电
导率:6.0~9.0mS/cm(普通型),10.0~14.0mS/cm(倍率型)
水份含量:≤20ppm
HF含量: ≤20ppm
2.8 隔膜
隔膜材质:单层或者多层的PE、PP
厚度规格:12um~30um
2.9 外包装——铝塑膜
铝塑膜主要厚度:88um/113um/122um/153um几种厚度规格。
铝塑膜主要结构为三层Nylon/Al/CPP,以及2层粘接剂;其中Nylon:20um左右,Al层40um左右,剩下的厚度为CPP厚度。
三、结构设计部分
3.1 型号确定
电池型号主要受限于使用设备内放置电池部位的空间,还需要考虑电池使用过程中的膨胀问题。
本部分以P455268/2500Ah为例说明电池的结构设计:
型号:P455268 标称容量:2500mAh
尺寸: 厚max4.5mm,宽max52.0mm,长max68.0mm
3.2 铝塑膜包装壳
冲坑长(外坑)= 电池长度 - 顶封边宽度 - 偏差系数C
偏差系数C: 长度方向由于各种误差所产生的系数,需要减掉才能保证电池不超长;
单坑电池:C=1.0mm;
双坑电池:C=1.5mm;
冲坑宽(内坑) = 电池宽度 - 折边宽度C
折边宽度C:电池折边需要占用的宽度空间
电池厚度T≤2.8mm时,C = 2.5mm
2.8mm<电池厚度T≤3.5mm时,C=2.0mm
电池厚度T>3.5mm时, C=1.5mm
此类电池为单折边,若制程能力足够,Cmin=1.0mm
冲壳深(单坑)= 卷芯厚度 - 0.2mm
冲壳深(双坑)= 卷芯厚度mm (两坑相加之和)
在壳子深度大于5.0mm时建议使用双坑,两坑(正坑和反坑)的深度差1.0mm左右
铝塑膜厚度的选择:
88um
铝塑膜:
冲壳深度≤3.0mm,适用于厚度≤3.5mm 的电池
113um铝塑膜:
冲壳深度≤4.0mm,适用于厚度≤5.0mm 单坑电池或厚度≤8.0mm的双坑电池
152um铝塑膜:
冲壳深度≤6.5mm,适用于厚度>8.0mm 的双坑电池
3.3 隔膜宽度
隔膜宽度 = 铝塑膜冲壳长(外坑)- (0.0~0.5mm)
3.4 极片尺寸设计
负极片宽度 = 隔膜 - D1
正极片宽度 = 负极片宽度 - D2
D1: 负极片宽度与隔膜宽度之间的偏差余量,防止负极片错位超出隔膜范围
一般取2.0~3.0mm
D1=2.0mm, 极片长度≤500mm & 极片宽度≤50.0mm
D1=2.5mm, 500mm<极片长度≤1500mm
D1=3.0mm, 极片长度>1500mm
D2: 负极片与正极片之间的错位偏差,一般取0.0~2.0mm
D2=0.0mm, 电池容量≤200mAh
D2=1.0mm,极片长度≤500mm & 极片宽度≤50.0mm
D2=1.5mm, 500mm<极片长度≤1000mm
D2=2.0mm, 极片长度>1000mm
正极片长度 = 卷针理论宽度×正极片层数+P1+P2
负极片长度 = 正极片敷料长度×0.5+负极长度余量
卷针理论宽度 = 卷针实际宽度+卷针厚度+参数调整值(0.2~0.5mm)
P1:正极片在偶数折的圆弧长度之和
P2:正极片在奇数折的圆弧长度之和--具体计算参考工艺要求
负极长度余量:一般取3.0~5.0mm
3.5 正/负极片面密度计算
ρ负 = ρ正×2S正× R正× C正×E / (2S正× R负× C负)= ρ正× R正× C正×E / (R负× C负)
ρ
正
:
正极片单面面密度
ρ
负
:
负极片单面面密度
正极片单面面积
R
正
R
负
C
正
C
负
T
0
-2×t) / E /T
层
= ( T
0
:
电池设计平均厚度
t:
铝塑膜厚度
T
层
:
单层厚度
M:
正极片厚度
N:
负极片厚度
L:
隔膜厚度
E:
电池膨胀系数
3.7 隔膜长度
隔膜长度=负极片长度×2+卷针宽度×2+40mm余量
3.8 电池厚度估算
电池厚度=TA×EA×LA+TC×EC×LC+TM×LM+TAl×2
T
A
:
正极片辊压厚度
E
A
:
正极片膨胀率
L
A
:
正极片层数
T
C
:
负极片辊压厚度
E
C
:
负极片膨胀率
L
C
:
负极片层数
T
M
:
隔膜厚度
L
M
:
隔膜层数
T
Al
:
铝塑膜厚度
四.结语
本设计规范仅供参考,其中的一些系数需要结合实际情况加以修正。
对于锂离子电池技术来说,以上介绍只是一个很小的方面,为了能做出好的电池,我们需要统筹考虑电池设计和生产中的人、机、料、法、环各个因素,并把这些因素引入过程的每个细节之中。
相关阅读:
锂离子电池制备材料/压力测试
!
锂电池自放电测量方法:静态与动态测量法
!
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
!
锂电池循环寿命研究汇总(附60份精品资料免费下载)
登录阅读全文
电池设计
电池
电化学
结构设计
免责声明:
该内容由专栏作者授权发布或作者转载,目的在于传递更多信息,并不代表本网赞同其观点,本站亦不保证或承诺内容真实性等。若内容或图片侵犯您的权益,请及时联系本站删除。侵权投诉联系:
nick.zong@aspencore.com
!
锂电联盟会长
研发材料,应用科技
进入专栏
评论
(0)
请登录后参与评论回复
登录
芯语
帖子
文库
下载
博文
免费下载:硅基 / SiC/GaN 全技术图谱
电子工程师必看!英飞凌最新发布《高效电源转换技术白皮书》重磅揭秘: 硅基 / SiC/GaN 全技术图谱公开!一次搞懂不同场景下的最优解。
出货量全国第一!射频芯片细分龙头拿下数亿元融资
物联传媒
2025-04-23
366浏览
揭开转速36000rpm、功率510KW电机的神秘面纱
电动车千人会
2025-04-23
326浏览
黄渤上海车展现场给问界M8泼冷水,余承东回应封神!
快科技
2025-04-23
301浏览
iPhone17ProMax或改名“Ultra”:续航再突破?
手机技术资讯
2025-04-23
288浏览
国内半导体设备企业,拟精简至10家
芯极速
2025-04-23
277浏览
IDC:2025年Q1中国折叠屏手机出货增长53.1%,华为份额超75%
52RD
2025-04-24
256浏览
头部玩家打响新一轮「增长战役」,激光雷达将成「安全件」?
高工智能汽车
2025-04-23
222浏览
美国:加征3403.96%巨额关税!全球光伏产业格局生变
电子工程世界
2025-04-23
201浏览
IU5209E升压充电管理芯片
芯晶图电子
2025-04-16
784浏览
差分晶振的输出方式有哪几种呢
yxc扬兴科技
2025-04-16
1177浏览
高明的领导都看重组织建设和人才的培养,“组织行为学...
金航标萨科微谢S
2025-04-10
115浏览
CV8788对比Lattice HDMI TX芯片!性能超过9022/9136,交期缩短
视频转换李工
2025-04-08
656浏览
供电12V,灯珠2835的,规格书如附件,如果要做成5W的总功...
QWE4562009
2025-04-10
685浏览
人形机器人半程马拉松在北京亦庄举行。
丙丁先生
2025-04-19
4浏览
MacBook扩展坞怎么选?
SAMZHE
2025-04-21
112浏览
有些电源是需要挂着负载才有输出 这种电路原理是怎么做...
QWE4562009
2025-04-07
153浏览
一个车充产品输入12-24V,输入最高耐压100V,输出5V3A,输入...
QWE4562009
2025-04-19
193浏览
供应Mstar/MTK数字电视SOC芯片TSUMV56RBUT-Z1
youngriver77
2025-04-09
45浏览
浅谈当前半导体芯片发展趋势---个人心得体会
RichardLXQ
2025-04-12
1026浏览
硬件工程师的前途如何,如何学习才能实现小康
用户1743937631577
2025-04-06
107浏览
可以兼容替代CS4272!NX9020中文规格书/参数,114 dB CODEC
所需E币: 0
2025-04-16 10:26
大小: 374.78KB
上传者:
纳祥科技王工
IGBT图解
所需E币: 1
2025-04-10 09:04
大小: 1.76MB
上传者:
Eronatos
STM32G431移植FreeModbus
所需E币: 1
2025-04-18 07:35
大小: 19.5MB
上传者:
汕
电子元件超宽温晶体振荡器FCO-3C-WT:极端环境应用的低抖动相噪特性及电气规格说明
所需E币: 0
2025-04-23 11:46
大小: 4.87MB
上传者:
FCom富士晶振
[17章]计算机视觉—YOLO+Transfomer多场景目标检测实战
所需E币: 0
2025-04-22 09:34
大小: 3.12KB
上传者:
huangyasir1990
电子元件FCO-2C-WT系列超宽温SMD振荡器:低抖动相噪特性及其工业与极端环境应用设计
所需E币: 0
2025-04-23 11:45
大小: 4.65MB
上传者:
FCom富士晶振
WIFI音频流媒体串流音乐播放器方案
所需E币: 0
2025-04-22 11:40
大小: 436.33KB
上传者:
SpatialAudio
100v的过流保护Efuse介绍
所需E币: 0
2025-04-19 15:11
大小: 1.15MB
上传者:
王萌
纳祥科技NX8406规格参数,数字音频解码发射,PIN对PIN替代CS8406
所需E币: 0
2025-04-14 14:04
大小: 3.71MB
上传者:
纳祥科技王工
如何使用英飞凌IGBT7设计高性能伺服驱动器
所需E币: 1
2025-04-10 09:03
大小: 2.51MB
上传者:
Eronatos
FCO-3C-UP | 3.2*2.5mm | 1.2V低功耗SMD晶体振荡器
所需E币: 0
2025-04-11 22:15
大小: 5.18MB
上传者:
FCom富士晶振
纳祥科技音量调节芯片NX6805中文规格书,代替DSP部分功能
所需E币: 0
2025-04-22 17:15
大小: 367.17KB
上传者:
纳祥科技王工
航空兵训练与战术对抗仿真平台系统全面解析
航空兵训练与战术对抗仿真平台系统解析 北京华盛恒辉航空兵训练与战术对抗仿真平台系统是现代军事训练的关键工具,借助计算机技术构建虚拟战场,支持多兵种协同作战模拟,为军事决策、训练及装备研发提供科学依据。 应用案例 目前,已有多个航空兵训练与战术对抗仿真平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润航空兵训练与战术对抗仿真平台。这些成功案例为航空兵训练与战术对抗仿真平台的推广和应用提供了有力支持。 一、系统架构与核心功能 系统由模拟器、计算机兵力生
华盛恒辉l58ll334744
2025-04-24 16:34
116浏览
电磁频谱数据综合管理平台系统全面解析
电磁频谱数据综合管理平台系统解析 一、系统定义与目标 北京华盛恒辉电磁频谱数据综合管理平台融合无线传感器、软件定义电台等前沿技术,是实现无线电频谱资源全流程管理的复杂系统。其核心目标包括:优化频谱资源配置,满足多元通信需求;运用动态管理与频谱共享技术,提升资源利用效率;强化频谱安全监管,杜绝非法占用与干扰;为电子战提供频谱监测分析支持,辅助作战决策。 应用案例 目前,已有多个电磁频谱数据综合管理平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁频谱数
华盛恒辉l58ll334744
2025-04-23 16:27
193浏览
高海拔区域勤务与装备保障调度系统平台全面解析
高海拔区域勤务与装备保障调度系统平台解析 北京华盛恒辉高海拔区域勤务与装备保障调度系统平台专为高海拔特殊地理环境打造,致力于攻克装备适应、人员健康保障、物资运输及应急响应等难题。以下从核心功能、技术特点、应用场景及发展趋势展开全面解读。 应用案例 目前,已有多个高海拔区域勤务与装备保障调度系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润高海拔区域勤务与装备保障调度系统。这些成功案例为高海拔区域勤务与装备保障调度系统的推广和应用提供了有力支持。 一、核心
华盛恒辉l58ll334744
2025-04-24 10:13
104浏览
无人机结构仿真与部件拆解分析系统平台全面解析
无人机结构仿真与部件拆解分析系统平台解析 北京华盛恒辉无人机结构仿真与部件拆解分析系统无人机技术快速发展的当下,结构仿真与部件拆解分析系统平台成为无人机研发测试的核心工具,在优化设计、提升性能、降低成本等方面发挥关键作用。以下从功能、架构、应用、优势及趋势展开解析。 应用案例 目前,已有多个无人机结构仿真与部件拆解分析系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机结构仿真与部件拆解分析系统。这些成功案例为无人机结构仿真与部件拆解分析系统的推广和应用提
华盛恒辉l58ll334744
2025-04-23 15:00
203浏览
海上训练与保障调度指挥平台系统全面解析
海上训练与保障调度指挥平台系统解析 北京华盛恒辉海上训练与保障调度指挥平台系统是现代海上作战训练的核心枢纽,融合信息技术、GIS、大数据及 AI 等前沿技术,旨在实现海上训练高效组织、作战保障科学决策。以下从架构功能、应用场景、系统优势及发展挑战展开解读。 应用案例 目前,已有多个海上训练与保障调度指挥平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润海上训练与保障调度指挥平台。这些成功案例为海上训练与保障调度指挥平台的推广和应用提供了有力支持。 一
华盛恒辉l58ll334744
2025-04-24 15:26
101浏览
有效样本分析决策系统平台全面解析
有效样本分析决策系统平台全面解析 一、引言 北京华盛恒辉有效样本分析决策系统在当今数据驱动的时代,企业、科研机构等面临着海量数据的处理与分析挑战。有效样本分析决策系统平台应运而生,它通过对样本数据的精准分析,为决策提供有力支持,成为提升决策质量和效率的关键工具。 应用案例 目前,已有多个有效样本分析决策系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润有效样本分析决策系统。这些成功案例为有效样本分析决策系统的推广和应用提供了有力支持。 二、平台概述
华盛恒辉l58ll334744
2025-04-24 11:13
95浏览
通用装备论证与评估系统平台全面解析
通用装备论证与评估系统平台解析 北京华盛恒辉通用装备论证与评估系统平台是服务军事装备全生命周期管理的综合性信息化平台,通过科学化、系统化手段,实现装备需求论证、效能分析等核心功能,提升装备建设效益。 应用案例 目前,已有多个通用装备论证与评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润通用装备论证与评估系统。这些成功案例为通用装备论证与评估系统的推广和应用提供了有力支持。 一、系统分层架构 (一)数据层 整合装备性能、作战、试验等多源异
华盛恒辉l58ll334744
2025-04-24 16:14
108浏览
国产!基于瑞芯微RK3576ARM八核2.2GHz A72 工业评估板——多屏同显、异显方案演示
前言本文主要演示基于TL3576-MiniEVM评估板HDMI OUT、DP 1.4和MIPI的多屏同显、异显方案,适用开发环境如下。Windows开发环境:Windows 7 64bit、Windows 10 64bitLinux开发环境:VMware16.2.5、Ubuntu22.04.5 64bitU-Boot:U-Boot-2017.09Kernel:Linux-6.1.115LinuxSDK:LinuxSDK-[版本号](基于rk3576_linux6.1_release_v
Tronlong
2025-04-23 13:59
141浏览
陆地装备体系论证与评估综合平台系统全面解析
陆地装备体系论证与评估综合平台系统解析 北京华盛恒辉陆地装备体系论证与评估综合平台系统是契合现代军事需求而生的专业系统,借助科学化、智能化手段,实现对陆地装备体系的全方位论证与评估,为军事决策和装备发展提供关键支撑。以下从功能、技术、应用及展望展开分析。 应用案例 目前,已有多个陆地装备体系论证与评估综合平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润陆地装备体系论证与评估综合平台。这些成功案例为陆地装备体系论证与评估综合平台的推广和应用提供了有力支持。
华盛恒辉l58ll334744
2025-04-24 10:53
110浏览
陆地边防事件紧急处置系统平台全面解析
陆地边防事件紧急处置系统平台解析 北京华盛恒辉陆地边防事件紧急处置系统平台是整合监测、预警、指挥等功能的智能化综合系统,致力于增强边防安全管控能力,快速响应各类突发事件。以下从系统架构、核心功能、技术支撑、应用场景及发展趋势展开全面解读。 应用案例 目前,已有多个陆地边防事件紧急处置系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润陆地边防事件紧急处置系统。这些成功案例为陆地边防事件紧急处置系统的推广和应用提供了有力支持。 一、系统架构 感知层:部
华盛恒辉l58ll334744
2025-04-23 11:22
128浏览
后勤实验仿真系统平台全面解析
后勤实验仿真系统平台深度解析 北京华盛恒辉后勤实验仿真系统平台依托计算机仿真技术,是对后勤保障全流程进行模拟、分析与优化的综合性工具。通过搭建虚拟场景,模拟资源调配、物资运输等环节,为后勤决策提供数据支撑,广泛应用于军事、应急管理等领域。 应用案例 目前,已有多个后勤实验仿真系统平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润后勤实验仿真系统平台。这些成功案例为后勤实验仿真系统平台的推广和应用提供了有力支持。 一、核心功能 (一)后勤资源模拟
华盛恒辉l58ll334744
2025-04-23 15:39
177浏览
汽车免拆诊断案例 | 2016款奔驰C200L车组合仪表上多个故障灯偶尔点亮
故障现象一辆2016款奔驰C200L车,搭载274 920发动机,累计行驶里程约为13万km。该车组合仪表上的防侧滑故障灯、转向助力故障灯、安全气囊故障灯等偶尔异常点亮,且此时将挡位置于R挡,中控显示屏提示“后视摄像头不可用”,无法显示倒车影像。 故障诊断用故障检测仪检测,发现多个控制单元中均存储有通信类故障代码(图1),其中故障代码“U015587 与仪表盘的通信存在故障。信息缺失”出现的频次较高。 图1 存储的故障代码1而组合仪表中存储有故障代码“U006488 与用户界
虹科Pico汽车示波器
2025-04-23 11:22
111浏览
锂电联盟会长
研发材料,应用科技
文章:3242篇
粉丝:116人
关注
私信
最近文章
重磅首发|时代瑞象史上最大规模磷酸锰铁锂项目投产
人形机器人催生锂电发展新“风口”
固态电池合集
热响应型单溶剂电解质:为锂金属电池安全护航
东北大学李犁教授ActaMaterialia:基于杂化界面工程的预腐蚀策略构筑超稳定锌金属负极
热门文章
广告
推荐
工程师速看!中端示波器软件升级“隐藏福利”曝光
STM32玩转机械手:边缘AI开发的实战课!
STM32峰会2025:AI与GUI开发的未来,就在这里!
AI数据中心过热?ST 10kW压缩机方案让液冷系统效能翻倍
在线研讨会
利用氮化镓技术打造高效电机驱动——人形机器人、无人机与电动汽车应用
ADMT4000重新定义多圈编码器设计
NSSine™系列实时控制MCU在数字电源和电机控制领域的应用
ST 在大功率热管理系统中的电机控制系统方案(AI 数据中心/暖通空调/电池储能系统/变频制冷)
EE直播间
中小数字IC云仿真加速方案:弹性资源与验证效率提升
直播时间:05月22日 10:00
E聘热招职位
资料
文库
帖子
博文
1
传感器与信号处理-图书
2
IGBT并联使用要点(来源于onsemi)
3
自动控制原理++上册,黄家英,第二版
4
现代传感器集成电路:通用传感器电路
5
微弱直流电压信号采集
6
IGBT图解
7
车规级功率半导体技术现状、挑战与发展趋势
8
硅微机械传感器
9
2025年感知技术十大趋势深度分析报告
10
头文件类型定义
1
【2025面包板社区内容狂欢节】发文、回帖赢25万E币!
2
已知并联电阻总阻值,算出23456个......并联电阻的阻值,比...
3
【敏矽微ME32G030系列】+初识及测试开发板(外接继电器)
4
差分晶振的输出方式有哪几种呢
5
MacBook扩展坞怎么选?
6
【敏矽微ME32G030系列】+初识篇
7
IU5209E升压充电管理芯片
8
【敏矽微ME32G030系列】+ADC转换测评
1
航空兵训练与战术对抗仿真平台系统全面解析
2
通用装备论证与评估系统平台全面解析
3
海上训练与保障调度指挥平台系统全面解析
4
有效样本分析决策系统平台全面解析
5
陆地装备体系论证与评估综合平台系统全面解析
6
高海拔区域勤务与装备保障调度系统平台全面解析
7
电磁频谱数据综合管理平台系统全面解析
8
后勤实验仿真系统平台全面解析
1
深入理解CPU上下文切换、进程上下文、中断上下文
2
三维集成电子封装中TGV技术及其器件应用进展
3
共模电感(扼流圈)选型
4
MOSFET选型规范
5
MOSFET选型注意事项及应用实例
6
MOSFET结构及其工作原理详解
7
变频器过热报警?别慌,一文教你轻松解决!
8
如何选择无刷、有刷直流电机?
9
【电机控制】PMSM无感FOC控制-双电阻以及三电阻电流采样法
10
手机充电器插入排插时打火花是怎么回事?
分享到
微信扫一扫,立即分享
评论
0
点赞
6
本网页已闲置超过10分钟,按键盘任意键或点击空白处,即可回到网页
X
最新资讯
机器人可能没你想得那么厉害:从Intel大小脑融合思路谈起
美式大house,一个家庭仅靠50安培的电力就能维持生活?
增强自主移动机器人的安全性
退退退!今年或有50架波音飞机被中国“退货”
字节跳动高薪背后的“十年枷锁”
我要评论
0
6
分享到微信
点击右上角,分享到朋友圈
我知道啦
请使用浏览器分享功能
我知道啦
×
提示!
您尚未开通专栏,立即申请专栏入驻