电极的厚度对锂电池电化学性能有多大的影响呢?

锂电联盟会长 2023-12-08 11:35
点击左上角“锂电联盟会长”,即可关注!

1 实验

为了获得不同厚度的电极,将NCM111正极材料、super-P和溶于NMP溶剂的PVDF粘结剂按照质量比0.85∶0.07∶0.08称量混合后,以300r/min高速球磨3h形成均匀的浆料。在自动涂敷机上采用不同厚度的刮刀将浆料涂覆到铝箔集流体上。在80℃下烘干后,冲压成直径12mm的电极片,再在80℃下真空烘干。制备的NMC电极的参数如表1所示。
全电池采用2032扣式电池组装。Celgard2400为隔膜,1 mol/L的LiPF6/(EC+DMC) (质量比为1∶1)为电解液,并充分浸润隔膜和电极。制备了一系列不同厚度的石墨负极与NMC电极匹配,石墨负极中包含质量分数为88.8%的石墨、3.2%的super-P和8%的PVDF粘结剂。为了避免负极上的锂沉积,负极与正极的可逆容量的比例控制在1.1~1.2。考虑到石墨工作电压平台的对锂电位为0.1V,NCM111/石墨电池的充放电区间为2.9~4.2V。所有测试都是在25℃室温下通过蓝电充放电设备完成。电池首先以0.05C循环充放电3次,确保组装完好。不同电极厚度的全电池的循环性能是在1C下进行100次充放电测试得出。

2 电化学模型的建立
为了研究电化学参数在电极层面的变化,建立了正极厚度分别为30和100um的 NCM111/石墨电池(命名为电池1和电池2)的一维等温电化学模型。所的仿真结果都采用有限元求解器COMSOL Multiphysics 4.4获得。为了验证模型的有效性,对两个电池测试的放电曲线与仿真结果进行了比较。模型中用到的参数是通过实验测量、文献和估计得到。

锂离子电池一维电化学模型的示意图如图1所示,通常由正极集流体(铝箔)、正极活性材料、隔膜、负极活性材料、负极集流体 (铜箔)5个部分组成。电极区域由活性插层材料粒子、电解液、粘结剂和导电剂混合构成,隔膜区域由高分子聚合物和电解液组成。考虑到电池中集流体的两侧都有电化学反应发生,一维电化学模型中集流体的厚度取实际集流体厚度的一半。
在放电过程,负极活性粒子中的锂离子由内部向表面扩散,在表面与电解液界面处发生电化学反应。锂离子由负极向正极方向的扩散与迁移,在正极发生电化学反应并嵌入活性粒子中。同时,负极电化学反应释放出的电子通过外电路由负极区域到达正极区域,形成放电电流。电池1和电池2电化学模型中的参数如表2所示。电解液电导率、正极和负极的开路电势的方程如下:
3 结果与讨论
3.1 实验结果
从电化学的角度来看,锂离子电池通常在在高倍率下放电时的性能会变差。为了探究电极厚度这一因素对锂离子电池性能的影响,对活性物质载量不同的NCM111/石墨电池进行了倍率性能测试。图2显示了不同活性物质载量的电池的放电比容量,电池以不同倍率放电,最后30圈是以1C放电,而每一次充电都是1C。
在1C下,最厚的电极(16.82mg/cm2)第1圈放电比容量为141mAh/g。相同条件下,不同厚度的电极的比容量在141~152mAh/g 范围内变化,最薄的电极(5.40mg/cm2)的比容量达到152mAh/g。值得一提的是,在第1圈后的充/放电效率几乎都是99%,这表明充/放电过程的良好的可逆性。而且,低活性物质载量的电极在高倍率下放电容量损失更小。正极活性物质载量为5.40mg/cm2的电池在5C下放电比容量为123mAh/g,相当于1C下放电比容量的81%,而相同条件下电极最厚的电池的容量损失高达44%。

对不同电极厚度的NCM111/石墨电池也进行了循环性能测试。以0.05C充放电3圈进行活化后,以1C进行放电和充电测试。不同活性物质载量的电极随着循环次数的增加,电池容量衰退如图3所示。尽管是相同的正极材料与负极材料,不同电极厚度的全电池的循环性能仍显示出明显的差异。100圈循环后,正极最薄(5.40mg/cm2)的电池的容量保持率为88.8%,而正极最厚(16.82mg/cm2)的电池的容量损失率为25.1%。总而言之,电极较厚的电池的容量衰退率较高。
3.2 模型的验证
为了评估电化学模型仿真电池放电过程的能力,验证模型的有效性,将仿真结果与 NCM111/石墨电池的实验结果进行了对比。图4(a)、图5(a)分别是正极活性物质载量为5.4和 16.82 mg/cm2 的全电池在1C、2C、3C下放电曲线的比较。
图 4 电极较薄的NCM111/石墨电池实验和仿真的放电曲线
电极参数如表1所示。实验过程中,所有电池都被置于25℃室温中。因为要对电池不同倍率放电的曲线进行比较,所以需要从同一初始状态开始放电。先以0.5C恒流充电到充电截止电压,再恒压充电到电流小于0.01C,认为此时的荷电状态(SOC)为100%。实验数据是取自5圈循环后的数据,因为这时电池的容量比较稳定。为了确保实验结果的准确性与可重复性,所有的实验结果取自3次重复测试的平均值。同时对电池1和电池2进行了1C 、2 C、3C放电的仿真。1C分别对应的是7.7和24.5A/m2的电流密度。其参数如表2所示。

图4对正极活性物质载量为5.4mg/cm2的全电池1C、2C3C测得的放电曲线与电池1的仿真放电曲线进行了比较。从图4(a)中可以看到,随着放电倍率的增加,电池会更快达到放电截止电压。正极活性物质载量为5.4mg/cm2的电池的3C放电容量只有其1C放电容量的94%。由于极化内阻的增加,3C放电的起始电位比1C放电的起始电位低了0.05V。而从图4(b)中可以看到,随着放电倍率的增加,仿真曲线也会更快达到放电截止电压,与实验测得的结果是类似的。对电池1而言,1C的放电容量有0.852mAh,与测得的放电容量0.884mAh极为接近。3C放电的容量相当于1C放电容量的97%,高于实际测得的结果,这可能是由于高倍率放电时极化被低估所引起的。

正极活性物质载量为16.82 mg/cm2的全电池测得1C、2C3C的放电曲线与电池2的仿真放电曲线的比较如图5所示。从图5(a)中可以看到,实验测得的3C放电的容量只有其1C放电容量的87%。除此之外,3C放电的起始电位比1C放电的起始电位低了0.09V。与正极活性物质载量为5.4mg/cm2的电池相比,随着电极厚度的增大,极化所引起的电势的下降更加明显。而对于电池2而言,1C的放电容量有2.53mAh,与测得的放电容量2.58mAh也相当接近。而且随着放电倍率的增大,仿真曲线会更快地达到放电截止电压,与实验测得的结果也是相吻合的。
图 5 电极较厚的NCM111/石墨电池实验和仿真的放电曲线
可以看到,电化学模型的仿真结果与实验测得结果具有相似的特征,电化学模型能定性地、有效地仿真NCM111/石墨电池的放电过程。

3.3 锂离子电池电化学仿真结果
锂离子电池一维电化学模型的优点在于能较准确地仿真电池的放电过程而且能较好地反映电池内部的实际情况。凭借这些信息,可以对电池的性能进行评估并对电池的设计进行优化。接下来将阐述电化学模型的部分输出结果。

图6显示的是两个电池的正极区域在3C恒流放电过程中选取的不同时间点的电解质盐浓度变化过程。放电初始时刻,电池内部锂盐浓度均匀分布,随着放电过程的进行,电解质浓度迅速极化,电池内部逐渐建立起电解质浓度梯度,正极中电解质浓度逐渐降低,而隔膜中电解质浓度变化不大。在整个放电过程中,正极集流体界面一直有较高浓度的电解质,这一结果表明正极内部没有出现电解质耗竭的现象。

图 6 3C放电过程中电解质盐浓度的变化

但是,电池1在60s时电解质盐浓度基本上就已经形成了梯度,而电池2一直到放电末期电解质盐浓度仍在降低。另外,电池2靠近集流体一侧的电解质盐浓度比电池1的要低得多。这说明由于电极厚度的增加,电极靠近集流体侧的电解液消耗也会增加。这可能会使电化学反应速率变慢,活性物质得不到充分的利用,从而导致电池在高倍率下放电容量的降低。

活性粒子表面的锂离子浓度是描述锂离子电池内部电化学反应的程度和是否平缓的重要指标。图7是电池不同放电时刻沿电极厚度方向上活性颗粒表层的Li+浓度分布曲线。由图7可知,随着放电时间的延长,正极活性颗粒表层的浓度逐渐升高。放电过程中,曲线逐渐倾斜,正极中靠近隔膜的区域内Li+浓度较高。电极越厚,曲线倾斜现象越明显。这意味着正极的锂离子浓度的分布变得更加不均匀,说明电池内部的插层反应程度不一致而且活性粒子利用的程度也不一致。

图 7 3C放电过程中活性颗粒表层锂离子浓度变化曲线

而且,因为浓差极化和扩散的限制,电池2正极内固相粒子表面的锂离子浓度分布也是不均匀的。这可能会导致电池内电化学反应速率的不一致,从而影响电池的功率输出;并导致电极内体积变化的不一致,从而导致应力积累,累积的应力可能造成电极裂缝或断裂。裂缝使活性物质孤立,从而导致电极的容量损失和阻抗增加。然而在电池1中,电极更薄,在放电过程中固相粒子表面的锂离子浓度分布在各个时间点都比较均一,这意味着电化学反应能顺畅地进行,并且确保了较高的功率和容量的输出。

本文对电极厚度对过电势及电解液电势的影响也进行了研究,因为它与电池在大倍率下的放电性能息息相关。放电初始阶段和放电末期的电解液电势的差别与浓差极化有着紧密的联系,这可能会导致电池充电容量未能充分利用,而且会引起电池性能的衰减。

考虑到只需比较两条曲线的差别及斜率大小,所以将电解液电势曲线进行了移动,使两条曲线的隔膜位置的电势都移动到了0V位置,如图8所示。电池1的电解液电势在整个放电阶段几乎没有变化,这意味着其浓差极化很小。

图 8 3C放电过程中过电势与电解液电势的比较

当电极变厚时,电池2中浓度梯度变大且欧姆电势降显著增加,因此由电池内电解液盐浓度分布差异造成的极化现象更为明显。对电池2的正极区域而言,电解液电势的下降由放电初始阶段的0.17V增长到放电结束时的0.41V,这是由于浓度梯度的形成及反应向电极内部的渗透。这会进一步造成放电过程中电池极化内阻的增加,削弱电池的放电能力,并且会引起更多的副反应,如电解液氧化和不可逆相变。这也是电池容量衰退的重要原因。

4 结论
本文制备了不同厚度的NCM111电极片,采用电化学模型对不同电极厚度的两个电池进行了仿真。将仿真结果与实验结果进行对比,验证了模型的有效性,证明基于多孔电极理论的一维锂离子电池电化学模型可以有效地仿真NCM111/石墨电池的放电过程。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 97浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 111浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 106浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 101浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 93浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 88浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 95浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 98浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 113浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 84浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 79浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦