开关电源测试项目

电源研发精英圈 2023-12-07 20:01

1、功率因素和效率测试

一、目的:

测试S.M.P.S. 的功率因素POWER FACTOR, 效率EFFICIENCY(规格依客户要求设计).

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). DIGITAL VOLTAGE METER (DVM) / 数字式电压表;

(4). AC POWER METER / 功率表;

三. 测试条件:

四、测试方法:

(1). 依规格设定测试条件: 输入电压, 频率和输出负载.

(2). 从POWER METER 读取Pin and PF 值, 并读取输出电压, 计算Pout.

(3). 功率因素=PIN / (Vin*Iin), 效率=Pout / Pin*100%;

五. 测试回路图:


2.能效测试

一、目的:

测试S.M.P.S. 能效值是否满足相应的各国能效等级标准要求(规格依各国标准要求定义).

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). AC POWER METER / 功率表;

三. 测试条件:

(1). 输入电压条件为115Vac/60Hz和230Vac/50Hz与220Vac/50Hz/60Hz条件.

(2). 输出负载条件为空载、1/4 max. load、2/4 max. load、3/4 max. load、max. load五种负载条件.

四、测试方法:

(1).在测试前将产品在在其标称输出负载条件下预热30分钟.

(2). 按负载由大到小顺序分别记录115Vac/60Hz与230Vac/50Hz输入时的输入功率(Pin),输入电流(Iin),输出电压(Vo), 功率因素(PF),然后计算各条件负载的效率.

(3). 在空载时仅需记录输入功率(Pin)与输入电流(Iin).

(4).计算115Vac/60Hz与230Vac/50Hz时的四种负载的平均效率,该值为能效的效率值

五、标准定义:

CEC / 美国EPA / 澳大利亚及新西兰的能效规格值标准(IV等级);

(1). IV等级效率的规格是: 

    1) Po<1W, Average Eff.≥0.5*Po;

    2) 1≤Po≤51W,Average Eff.≥0.09*Ln(Po)+0.5; 

    3) Po>51,Average Eff.≥0.85

(2) 输入空载功率的规格是:1).0

(3) Po为铭牌标示的额定输出电压与额定输出电流的乘积;

(4) 实际测试的平均效率值和输入空载功率值需同时满足规格要求才可符合标准要求.

六、计算方法举例:

(1)12V/1A的能效效率=(0.09*ln12+0.5 )*100%= (0.09*2.4849+0.5)*100%=72.36%;

(2). 输入功率≤ 0.5W;


3. 输入电流测试

一、目的:

测试S.M.P.S. 之输入电流有效值INPUT CURRENT(规格依客户要求设计).

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). AC POWER METER / 功率表;

三. 测试条件:

四、测试方法:

(1). 依规格设定测试条件: 输入电压, 频率和输出负载;

(2). 从功率计中记录AC INPUT 电流值;


4.浪涌电流测试

一、目的:

测试S.M.P.S. 输入浪涌电流INRUSH CURRENT, 是否符合SPEC.要求.

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器;

三. 测试条件:

(1).依SPEC. 所要求(通常定义输入电压为100-240Vac/50-60Hz).

四、测试方法:

(1). 依SPEC. 要求设定好输入电压, 频率, 將待测品输出负载设定在MAX. LOAD.

(2). SCOPE CH2 接CURRENT PROBE, 用以量测INRUSH CURRENT, CH1设定在DC Mode, VOLTS/DIV 设定视情况而定, CH1

作为SCOPE 之TRIGGER SOURCE, TRIGGER SLOPE 设定为"+", TIME/DIV 以5mS 为较佳, TRIGGER MODE 设定为"NORMAL".

(3). CH1 则接到AC 输入电压.

(4). 以上设定完成后POWER ON, 找出TRIGGER 动作电流值(AT 90o 或270o POWER ON).

五、注意事项:

(1). 冷开机(COLD-START): 需在低(常)温环境下且BULK Cap.电荷须放尽, 以及热敏电阻亦处于常温下, 然后仅能第一次开机,

若需第二次开机须再待电荷放尽才可再开机测试.

(2). OSCILLOSCOPE 需使用隔离变压器.

六、测试回路图:




5. 电压调整率测试

一、目的:

测试S.M.P.S. OUTPUT LOAD 一定而AC LINE 变动时, 其输出电压跟随变动之稳定性(常规定义≤1%).

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). DIGITAL VOLTAGE METER (DVM) / 数字式电压表;

三. 测试条件:

四、测试方法:

(1). 依规格设定测试负载LOAD 条件.

(2). 调整输入电压AC LINE 和频率FREQUENCY 值.

(3). 记录待测品输出电压值是否在规格内.

(4). Line reg.=(输出电压的最大值(Vmax.)-输出电压的最小值(Vmin.))/Vrate volt.*100%.

五. 注意事项:

(1). 测试前先将待测品热机, 待其输出电压稳定后再进行测试.

(2). 电压调整率值是输出负载不变,输入电压变动时计算的值.


6.负载调整率测试

一、目的:

测试S.M.P.S. 在AC LINE 一定而OUTPUT LOAD 变动时, 其输出电压跟随变动之稳定性(常规定义≤±5%).

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). DIGITAL VOLTAGE METER (DVM) / 数字式电压表;

三. 测试条件:


四、测试方法:

(1). 依规格设定测试输入电压AC LINE 和频率FREQUENCY 值.

(2). 调整输出负载LOAD 值

(3). 记录待测品输出电压值是否在规格内.

(4). Load reg.=(输出电压的最大/小值(Vmax/min.)-输出电压的额定值(Vrate))/Vrate volt.*100%.

五. 注意事项:

(1). 测试前先将待测品热机, 待其输出电压稳定后再进行测试;

(2). 负载调整率值是输入电压不变,输出负载变动时计算的值.


7. 输入缓慢变动测试

一、目的:

验证当输入电压偏低情形发生时, 待测品需能自我保护, 且不能有损坏现象;

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). AC POWER METER / 功率表;

三. 测试条件:

(1). 依SPEC. 要求: 设定输入电压为90Vac 或180Vac 和输出负载Max. load;

四、测试方法:

(1). 将待测品与输入电源和电子负载连接好, 且设定好输入电压和输出负载;

(2). 逐步调降输入电压, 每次3 Vac/每分钟.

(3). 记录电压值(包括输入电压和输出电压), 直到待测品自动当机为止.

(4). 设定好输入电压为0Vac,逐步调升输入电压, 每次3 Vac/每分钟,

直到待测品输出电压达到正常规格为止,记录电压启动时输出电压和输入电压值.

五、注意事项:

(1). 待测品在正常操作情况下不应有任何不稳动作发生, 以及失效情形;

(2). 产品当机和启动时的输入电压需小于输入电压范围下限值.


8. 纹波及噪声测试

一、目的:

测试S.M.P.S. 直流输出电压之纹波RIPPLE 及噪声NOISE(规格定义常规为≤输出电压的1%);

二. 使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3) OSCILLOSCOPE / 示波器;

(4) TEMP. CHAMBER / 温控室;

三. 测试条件:

各种LINE 和LOAD 条件及温度条件, 各种输入电压& 输出负载(Min.-MAX. LOAD).

四、测试方法:

(1). 按测试回路接好各测试仪器,设备,以及待测品,测试电源在各种LINE 和LOAD,及温度条件之RIPPLE &NOISE(下图为一典型输出RIPPLE & NOISE A: RIPPLE+NOISE; B: RIPPLE; C: NOISE

五、注意事项:

(1). 测试前先将待测输出并联SPEC. 规定的滤波电容, (通常为10uF/47uF电解电容;或钽电容及0.1uF陶瓷电容) 频宽限制依SPEC. 而定(通常为20MHz).

(2). 应避免示波器探头本身干扰所产生的杂讯.


9.上升时间测试

一、目的:

测试S.M.P.S. POWER ON 时,各组输出从10% ~ 90% POINT 之上升时间(常规定义为≤20mS).

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

四、测试方法:

(1). 依规格设定AC VOLTAGE, FREQUENCY AND LOAD;

(2). SCOPE 的CH1 接Vo, 并设为TRIGGER SOURCE, LEVEL 设定在Vo 的60% ~ 80% 较为妥当, TRIGGER SLOPE 设定在"+",

TIME/DIV 和VOLTS/DIV 则视输出电压情况而定;

(3). 用CURSOR 中"TIME", 量测待测品各组输出从电压10% 至90% 之上升时间。

五、注意事项:

测试前先将待测品处于冷机状态,待BUCK Cap。电荷放尽后进行测试。

10.下降时间测试

一、目的:

测试S.M.P.S. POWER ON 时,各组输出从90% ~ 10% POINT 之下降时间(常规定义≥5mS)。

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

四、测试方法:

(1). 依规格设定AC VOLTAGE, FREQUENCY AND LOAD;

(2). SCOPE 的CH1 接Vo, 并设为TRIGGER SOURCE, LEVEL 设定在Vo 的60% ~ 80% 较为妥当, TRIGGER SLOPE 设定在"-",TIME/DIV 和VOLTS/DIV 则视输出电压情况而定;

(3). 用CURSOR 中"TIME", 量测待测品各组输出从电压90% 至10% 之下降时间。

五、注意事项:

测试前先将待测品热机, 待其输出电压稳定后再进行测试。

11.开机延迟时间测试

一、目的:

测试S.M.P.S. POWER ON 时, 输入电压AC LINE 与输出之时间差(常规定义为≤3000mS)。

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

四、测试方法:

(1). 测试时依规格设定AC LINE, FREQUENCY 和输出负载(一般LOW LINE & MAX. LOAD时间最长);

(2). OSCILLOSCOPE 的CH1 接Vo 为TRIGGER SOURCE, CH2 接AC LINE;

(3). TRIGGER LEVEL 设定在Vo 的60% ~ 80% 间较为妥当,TRIGGER SLOPE 设定在"+",VOLTS/DIV 和TIME/DIV 则视实际情况而定;

(4). 用CURSOR 中"TIME", 量测AC ON 至Vo LOW LIMIT 之时间差。

五、注意事项:

(1). 测试前先将待测品处于冷机状态, 待BULK Cap. 电荷放尽后进行测试;

(2). 示波器(OSCILLOSCOPE) 需使用隔离变压器。

12.关机维持时间测试

一、目的:

测试S.M.P.S. POWER OFF 时, 输入电压AC LINE 与输出OUTPUT 之时间差(常规定义≥10mS/115Vac & ≥20mS/230Vac )。

二、使用仪器设备:

(1). AC SOURCE / 交流电源:

(2). ELECTRONIC LOAD / 电子负载:

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

四、测试方法:

(1). 测试时依规格设定AC LINE, FREQUENCY 和输出负载;

(2). OSCILLOSCOPE 的CH1 接Vo 为TRIGGER SOURCE, CH2 接ACLINE;

(3). TRIGGER LEVEL 设定在Vo 的60% ~ 80% 间较为妥当, TRIGGER SLOPE 设定在“-”, VOLTS/DIV 和TIME/DIV 则视实际情况而定;

(4). 用CURSOR 中"TIME", 量测AC ON 至Vo LOW LIMIT 之时间差。

五、注意事项:

(1). 测试前先将待测品热机, 待其输出电压稳定后再进行测试:

(2). 示波器(OSCILLOSCOPE) 需使用隔离变压器。

13.输出过冲幅度测试

一、目的:

测试S.M.P.S. POWER ON 时, 输出DC OUTPUT 过冲幅度变化量(常规定义为≤10%)。

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

依SPEC. 所要求,输入电压范围与输出负载(Min. – Max. load)。

四、测试方法:

(1). 测试时依规格设定AC LINE, FREQUENCY 和输出负载;

(2). OSCILLOSCOPE 的CH1 接Vo 为TRIGGER SOURCE;

(3). TRIGGER LEVEL 设定在Vo 的60% ~ 80% 间较为妥当, TRIGGER SLOPE 设定在“+” 和“-”, VOLTS/DIV 和TIME/DIV 则视实际情况而定;

(4). 用CURSOR 中"VOLT", 量测待测品輸出过冲点与稳定值之关系;

(5). ON / OFF 各做十次, 过冲幅度%=△V / Vo *100%。

五、注意事项:

产品在CC与CR模式都需满足规格要求。

14.输出暂态响应测试

一、目的:

测试S.M.P.S. 输出负载快速变化时, 其输出电压跟随变动之稳定性(规格定义电压最大与最小值不超过输出规格的±10%)。

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

依SPEC.所规定:输入电压AC LINE, 变化的负载LOAD, 频率及升降斜率SR/F 值。

四、测试方法:

(1). 测试时设定好待测品输入电压AC LINE 和频率FREQUENCY;

(2). 测试时设定好待测品输出条件:变化负载和变化频率及升降斜率;

(3). OSCILLOSCOPE CH1 接到OUTPUT 侦测点, 量其电压之变化;

(4). CH2 接CURRENT PROBE 测试输出电流, 作为OSCILLOSCOPE 之TRIGGER SOURCE;

(5). TRIGGER MODE设定为"AUTO."。

五、注意事项:

(1). 注意使用CURRENT PROBE 时,每改变VOLTS/DIV 刻度PROBE 皆须归零ZERO;

(2). 须经常对CURRENT PROBE 进行消磁DEGAUSS 和归零ZERO。

15.过流保护测试

一、目的:

测试S.M.P.S. 输出电流过高时是否保护, 保护点是否在规格要求內, 及是否会对S.M.P.S. 造成损伤(常规定义过流点为输出额定负载的1.2-2.5倍/ CV模式产品除外)。

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器。

三、测试条件:

依SPEC. 所规定:输入电压AC LINE 和电子负载。

四、测试方法:

(1). 将待测组输出负载设在MAX. LOAD;

(2). 以一定的斜率(通常为1.0A/S) 递增, 加大输出电流直至电源保护, 当保护后, 將所加大之电流值递减, 视其输出是否会自动RECOVERY;

(3). OSCILLOSCOPE CH2 接上CURRENT PROBE, 以PROBE 检测输出电流;

(4). CH1 则接到待测输出电压, 作为OSCILLOSCOPE 之TRIGGER SOURCE;

(5). TRIGGER SLOPE 设定为"-", TRIGGER MODE 设定为"AUTO", TIME/DIV 视情况而定。

五、注意事项:

(1). 注意使用CURRENT PROBE 时,每改变VOLTS/DIV 刻度PROBE 皆须归零ZERO;

(2). 须经常对CURRENT PROBE 进行消磁DEGAUSS 和归零ZERO;

(3). 产品不能有安全危险产生。

16.短路保护测试

一、目的:

测试S.M.P.S. 输出端在开机前或在工作中短路时, 产品是否有保护功能。

二、使用仪器设备:

(1). AC SOURCE / 交流电源;

(2). ELECTRONIC LOAD / 电子负载;

(3). OSCILLOSCOPE / 示波器;

(4). 低阻抗短路夹。

三、测试条件:

依SPEC.所规定:输入电压AC LINE和负载LOAD值和低阻抗短路夹。

四、测试方法:

(1). 依规格设定测试条件:输入电压AC LINE和负载LOAD值(一般为MAX.LOAD);

(2). 各组输出相互短路或对地短路,侦测输出特性;

(3). 开机后短路TURN ON THEN SHORT & 短路后开机SHORT THEN TURN ON 各十次。

五、注意事项:

(1). 当SHORT CIRCUIT 排除之后,检测待测品是否自动恢复或需重新启动(视SPEC 要求),并测试产品是否正常或有无零件损坏(产品要求应正常);

(2). 产品不能有安全危险产生。


免责声明:本文转自网络,版权归原作者所有,如涉及作品版权问题,请及时与我们联系,谢谢!


加入粉丝交流群


张飞实战电子为公众号的各位粉丝,开通了专属学习交流群,想要加群学习讨论/领取文档资料的同学都可以扫描图中运营二维码一键加入哦~ 

(广告、同行勿入)

电源研发精英圈 开关电源研发工程师精英汇集的平台!我们将定期发送开关电源技术资料与行业新闻,欢迎各位关注。(关键字: 电源开发工程师,LED电源,LED驱动电源,电源工程师, 电源学习,电源知识,电源技术,线性电源,逆变电源,电源芯片,电源模块,电源系统)
评论 (0)
  •   电磁干扰抑制系统平台深度解析   一、系统概述   北京华盛恒辉电磁干扰抑制系统在电子技术快速发展、电磁环境愈发复杂的背景下,电磁干扰(EMI)严重影响电子设备性能、稳定性与安全性。电磁干扰抑制系统平台作为综合性解决方案,通过整合多元技术手段,实现对电磁干扰的高效抑制,确保电子设备稳定运行。   应用案例   目前,已有多个电磁干扰抑制系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁干扰抑制系统。这些成功案例为电磁干扰抑制系统的推广和应用提供了有力支持。   二
    华盛恒辉l58ll334744 2025-04-22 15:27 134浏览
  •   北京华盛恒辉基于GIS的电磁态势可视化系统软件是将地理空间信息与电磁态势数据相结合,通过图形化手段直观展示电磁环境态势的系统。这类软件在军事、通信、无线电管理等领域具有广泛应用,能够辅助用户进行电磁频谱分析、干扰监测、态势研判和决策支持。以下是关于此类系统的详细介绍:   应用案例   目前,已有多个电磁态势可视化系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁态势可视化系统。这些成功案例为电磁态势可视化系统的推广和应用提供了有力支持。   一、系统功能   电磁
    华盛恒辉l58ll334744 2025-04-22 11:44 94浏览
  • 4 月 19 日,“增长无界・智领未来” 第十六届牛商大会暨电子商务十大牛商成果报告会在深圳凤凰大厦盛大举行。河南业之峰科技股份有限公司总经理段利强——誉峰变频器强哥凭借在变频器领域的卓越成就,荣膺第十六届电子商务十大牛商,携誉峰变频器品牌惊艳亮相,以十几年如一日的深耕与创新,书写着行业传奇。图 1:誉峰变频器强哥在牛商大会领奖现场,荣耀时刻定格牛商大会现场,誉峰变频器强哥接受了多家媒体的专访。面对镜头,他从容分享了自己在变频器行业二十年的奋斗历程与心路感悟。谈及全域营销战略的成功,誉峰变频器强
    电子与消费 2025-04-22 13:22 123浏览
  • 引言:老龄化社会的健康守护需求随着全球老龄化进程加速,老年人的健康管理与生活质量成为社会焦点。记忆衰退、用药混乱、日程遗漏等问题频发,催生了智能健康设备的市场需求。WTR096录音语音芯片,凭借其高度集成的录放音、计时时钟与计划管理功能,为老年人量身打造了一站式健康管理方案,重新定义智能语音时钟的价值。功能亮点:1. 用药安全守护:多维度提醒,拒绝遗忘多时段精准提醒:支持一天内设置多个用药时间(如早、中、晚),适配复杂用药需求。个性化语音定制:家属可录制专属提醒语音(如“上午9点,请服用降压药”
    广州唯创电子 2025-04-22 08:41 107浏览
  •   电磁兼容(EMC)故障诊断系统软件解析   北京华盛恒辉电磁兼容故障诊断系统软件是攻克电子设备电磁干扰难题的专业利器。在电子设备复杂度攀升、电磁兼容问题频发的背景下,该软件于研发、测试、生产全流程中占据关键地位。以下为其详细介绍:   应用案例   目前,已有多个电磁兼容故障诊断系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁兼容故障诊断系统。这些成功案例为电磁兼容故障诊断系统的推广和应用提供了有力支持。   一、软件核心功能   干扰与敏感分析:深度剖析电磁干
    华盛恒辉l58ll334744 2025-04-22 14:53 119浏览
  • 近期,金融界消息称,江西万年芯微电子有限公司申请一项名为“基于预真空腔体注塑的芯片塑封方法及芯片”的专利。此项创新工艺的申请,标志着万年芯在高端芯片封装领域取得重要突破,为半导体产业链提升注入了新动能。专利摘要显示,本发明公开了一种基于预真空腔体注塑的芯片塑封方法,方法包括将待塑封的大尺寸芯片平铺于下模盒腔体内的基板并将大尺寸芯片的背向表面直接放置于基板上以进行基板吸附;将上模盒盖合于下模盒形成塑封腔,根据基板将塑封腔分为上型腔以及下型腔;将下型腔内壁与大尺寸芯片间的空隙进行树脂填充;通过设置于
    万年芯 2025-04-22 13:28 86浏览
  • 引言:工业安全与智能化需求的双重驱动在工业安全、环境保护及家庭安防领域,气体泄漏引发的安全事故始终是重大隐患。随着传感器技术、物联网及语音交互的快速发展,气体检测报警器正朝着智能化、低成本、高可靠的方向演进。WT588F02B-8S语音芯片,以“离在线语音更换+多协议通信”为核心优势,为气体检测报警器提供了一套高效、灵活的低成本语音解决方案,助力开发者快速响应市场需求。产品功能与市场需求1. 核心功能:从监测到预警的全流程覆盖实时气体监测:支持一氧化碳、臭氧、硫化氢等多种气体浓度检测,精度可达p
    广州唯创电子 2025-04-22 09:14 92浏览
  • 据国际精益六西格玛研究所(ILSSI)成员大卫·哈钦斯(David Hutchins)的回忆,在“六西格玛”名称出现前,摩托罗拉组建了约100个质量改进团队,接受朱兰博士制作的16盘录像带培训,名为《朱兰论质量改进》(Juran on Quality Improvement),为了推广这种严谨的分析方法(朱兰博士视频中的核心内容),摩托罗拉前首席执行官鲍勃·加尔文创造了“六西格玛”这一标签,用以表彰这种“最顶尖"的方法。大卫·哈钦斯(David Hutchins)是朱兰博士的好友,也为他的工作做
    优思学院 2025-04-22 12:03 102浏览
  •   卫星通信效能评估系统平台全面解析   北京华盛恒辉卫星通信效能评估系统平台是衡量卫星通信系统性能、优化资源配置、保障通信服务质量的关键技术工具。随着卫星通信技术的快速发展,特别是低轨卫星星座、高通量卫星和软件定义卫星的广泛应用,效能评估系统平台的重要性日益凸显。以下从技术架构、评估指标、关键技术、应用场景及发展趋势五个维度进行全面解析。   应用案例   目前,已有多个卫星通信效能评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星通信效能评估系统。这些成功案例为卫
    华盛恒辉l58ll334744 2025-04-22 16:34 102浏览
  •   电磁兼容故障诊断系统平台深度解析   北京华盛恒辉电磁兼容(EMC)故障诊断系统平台是解决电子设备在复杂电磁环境下性能异常的核心工具。随着电子设备集成度提升与电磁环境复杂化,EMC 问题直接影响设备可靠性与安全性。以下从平台架构、核心功能、技术实现、应用场景及发展趋势展开全面剖析。   应用案例   目前,已有多个电磁兼容故障诊断系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁兼容故障诊断系统。这些成功案例为电磁兼容故障诊断系统的推广和应用提供了有力支持。  
    华盛恒辉l58ll334744 2025-04-22 14:29 144浏览
  •   北京华盛恒辉机场保障能力评估系统软件深度解析   在航空运输业快速发展的背景下,机场保障任务愈发复杂,传统人工评估方式已无法满足高效精准的管理需求。机场保障能力评估系统软件作为提升机场运行效率、保障飞行安全的关键工具,其重要性日益凸显。   应用案例   目前,已有多个机场保障能力评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润机场保障能力评估系统。这些成功案例为机场保障能力评估系统的推广和应用提供了有力支持。   一、系统功能模块   数据采集与整合模块  
    华盛恒辉l58ll334744 2025-04-22 10:28 119浏览
  • 在消费金融的赛道上,马上消费曾是备受瞩目的明星企业。自2015年成立以来,它以年均 30% 的净利润增速一路狂奔,成为持牌消费金融公司的标杆,2023年更是斩获19.82亿元净利润,风光无限。然而,2024年却成了马上消费的一道分水岭。2024年上半年,其营收为77.38亿元,同比下降2.11%;净利润更是同比骤降20.66%,仅为10.68亿元,创下历史最大跌幅 。与此同时,不良贷款率攀升至2.5%,不良余额高达16.54亿元,核心资本充足率降至12.72%,融资
    用户1742991715177 2025-04-21 21:29 123浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦