二值图像分析案例精选

OpenCV学堂 2023-12-05 21:52

点击上方↑↑↑OpenCV学堂”关注我

面向CV技术爱好者征稿,点击底部【合作交流】即可

最近一直有人向我提问很多二值图像分析相关的问题,特别选择了两个典型的轮廓分析问题。进行分析与编码实现与演示,废话不多说,先看第一个问题。

 

问题一

描述如下:

想找到工具盘中间缺少的几个点,统计出可以看到的工件数目

仔细分析图像发现,中间都毫无另外的有个白色很亮的圆圈,这个给了我两个思路

  • 可以通过霍夫变换检测圆来提取到

  • 可以通过二值图像分析来提取 + 轮廓分析来提取到这些点

得到这些轮廓点之后通过分析整个轮廓区域得到倾斜角度,进行纠偏,然后通过X与Y投影进行分割,得到每个零件的中心位置坐标,根据每一行的间隔设置阈值,从而实现缺少部分部分的标出与件数统计,确定了这样的思路以后,我就开始了写代码。代码实现是基于轮廓分析的思路,因为这个方法,用的阈值比较少,有利于算法稳定性检测。演示各部输出。二值化处理之后(形态学处理):


轮廓发现与校正角度之后


投影分析与统计结果如下:


此外基于霍夫也是可以尝试的,霍夫的二值化效果也比较好,显示如下:

感兴趣的同学可以自己继续尝试下去。

问题二

描述如下:

如何统计下图中的对象个数,原图如下

看到这个图像之后,个人觉得解决十分简单,基于最外层轮廓发现即可,无需树形结构与层次分析,集合图像形态学分析或者距离变换就可以得到,最终代码的运行结果如下:

代码

问题1的代码如下(已经添加各步骤注释了):

src = cv.imread("D:/images/zsxq/zsxq_01.jpg")
cv.imshow("input", src)

# 二值化处理
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
se = cv.getStructuringElement(cv.MORPH_RECT, (33))
dst = cv.morphologyEx(gray, cv.MORPH_GRADIENT, se)
ret, binary = cv.threshold(dst, 0255, cv.THRESH_OTSU | cv.THRESH_BINARY)

# 形态学处理
se = cv.getStructuringElement(cv.MORPH_ELLIPSE, (55))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, se)
se = cv.getStructuringElement(cv.MORPH_ELLIPSE, (1010))
binary = cv.morphologyEx(binary, cv.MORPH_CLOSE, se)
cv.imshow("binary", binary)

# 轮廓分析
contours, hireachy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
result = np.zeros_like(binary)
total = 0
for cnt in range(len(contours)):
    area = cv.contourArea(contours[cnt])
    if area < 55:
        continue
    rrt = cv.minAreaRect(contours[cnt])
    cx, cy = rrt[0]
    cv.circle(result, (np.int32(cx), np.int32(cy)), 5, (255), -1)
    total += 1

# 几何纠偏
h, w = result.shape
pts = []
for row in range(h):
    for col in range(w):
        pv = result[row, col]
        if pv == 255:
            pts.append((col, row))

pts = np.array(pts)
rrt = cv.minAreaRect(pts)
print(rrt)
M = cv.getRotationMatrix2D(((w-1)/2.0,(h-1)/2.0),rrt[2],1)
dst = cv.warpAffine(result,M,(w,h))
src = cv.warpAffine(src,M,(w,h))

# Y方向投影
tbins = y_split(dst)

# X 方向投影
print("y-step", tbins)
for i in range(0, len(tbins), 1):
    if i == 0:
        roi = dst[0:tbins[i], 0:w]
        src_roi = src[0:tbins[i], 0:w, :]
        x_projection(roi, src_roi)
        cv.imshow("roi", roi)
        cv.waitKey(0)
    if i == len(tbins)-1:
        roi = dst[tbins[i]:h-10:w]
        src_roi = src[tbins[i]:h-10:w, :]
        x_projection(roi, src_roi)
        cv.imshow("roi", roi)
        cv.waitKey(0)
    if 0 < i < (len(tbins)-1):
        roi = dst[tbins[i-1]:tbins[i] - 10:w]
        src_roi = src[tbins[i-1]:tbins[i] - 10:w,:]
        x_projection(roi, src_roi)
        cv.imshow("roi", roi)
        cv.waitKey(0)

# 显示结果
cv.imshow("result", result)
cv.imshow("dst", dst)
cv.putText(src, "numbers: " + str(total), (5050), cv.FONT_HERSHEY_SIMPLEX, 1.0, (00255), 2)
cv.imshow("detection", src)

cv.waitKey(0)
cv.destroyAllWindows()


问题2的完整代码如下:

import cv2 as cv
import numpy as np

src = cv.imread("D:/images/zsxq/zsxq_02.jpg")
cv.imshow("input", src)
src = cv.GaussianBlur(src, (33), 0)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
edge = cv.Canny(src, 50100)

se = cv.getStructuringElement(cv.MORPH_ELLIPSE, (1010))
binary = cv.morphologyEx(edge, cv.MORPH_CLOSE, se)
contours, hireachy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
count = 0
for cnt in range(len(contours)):
    area = cv.contourArea(contours[cnt])
    if area < 100:
        continue
    count += 1
    rrt = cv.minAreaRect(contours[cnt])

    # rotated rectangle
    box = cv.boxPoints(rrt)
    box = np.intp(box)
    cv.drawContours(src, [box], 0, (25500), 2)

cv.imshow("binary", binary)
cv.imshow("result", src)
cv.waitKey(0)
cv.destroyAllWindows()


以上这些都来自《OpenCV4应用开发 - 入门、进阶与工程化实践》书中第六、第七、第八章相关知识点的实际应用。图书作者贾志刚 拥有多年OpenCV开发与工程化经验,全书共计16个章节,重点聚焦OpenCV开发常用模块详解与工程化开发实践,提升OpenCV应用开发能力,助力读者成为OpenCV开发者,同时包含深度学习模型训练与部署加速等知识,帮助OpenCV开发者进一步拓展技能地图,满足工业项目落地所需技能提升。购买请点链接: 
https://item.jd.com/10092255924058.html
书中全部源代码已经基于OpenCV4.8 + VS2017调试通过。购买本书请扫码(此链接已经优惠打折!


购买图书有专属QQ群

负责贴身答疑解惑


读者专属QQ群 :657875553

进群暗号:OpenCV4读者



OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论 (0)
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 98浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 152浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 73浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 209浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 71浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 128浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 210浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 148浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 166浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 202浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 200浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 193浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦