TC3xx芯片ClockSystem功能详解-锁相环PLL

原创 汽车电子嵌入式 2023-12-01 08:00

前言

时钟好比MCU的心跳,只有时钟正常了,MCU的核及外设才能正常工作。从源头到系统到外设理解每一个时钟的来源及其具体值才能方便后面理解MCALGPTPWMICU等模块的配置(MCAL模块中的Tick数就是基于模块时钟的)。本系列文章就来详细介绍TC3xx芯片的时钟系统及其具体配置。本文为TC3xx芯片时钟系统的锁相环PLL详解


参考文章:

TC3xx芯片Clock System功能详解-时钟源OSC


缩略词

简写

全称

OSC

Oscillator Circuit

PLL

Phase-Locked Loop

DCO

Digitally Controlled Oscillator




注:本文章引用了一些第三方工具和文档,若有侵权,请联系作者删除!

正文

2. 时钟倍频PLL

系统 PLL 可以将低频外部时钟信号转换为高速内部时钟,以获得最佳性能。它允许通过改变不同的分频器因子来使用多种输入和输出频率。


系统 PLL 还具有故障安全逻辑,可检测到非生成外部时钟行为,如异常频率偏差或外部时钟完全丢失。如果它在外部时钟上失去锁定,它可以执行紧急操作。


2.1 特点

  • DCO锁检测

  • 3 位输入分隔器 P (除以 PDIV+1)

  • 7 位反馈分隔器 N (乘以 NDIV+1)

  • 3 位输出分隔器 K2 (除以 K2DIV+1)

  • 振荡器监视(Oscillator Watchdog)

    -检测输入频率是否太低

    -检测输入频率是否太高

  • 低频率抖动调制


2.2 系统时钟锁相环PLL

 


Figure 3 System PLL Block Diagram


输入频率 fOSC 除以因子 P ,乘以因子 N ,然后再除以因子 K2


输出频率计算公式如下:


fPLL0 = (N* fOSC) / (P * K2)


fPLL0需要 fOSC 的输入时钟频率。 因此,建议通过检查 OSCCON.PLLV 来检查和监控输入频率 fOSC 是否可用。 为了更好地监控,还可以通过 OSCCON.PLLHV 监控上频。


系统操作频率由三个分频器(divider)的值控制: P N K2。修改两个分频器 P N DCO 频率有直接影响,可能导致锁定状态丢失。修改 K2 分频器对锁定状态没有影响,但仍会更改系统 PLL 输出频率 fPLL0.


注意:通过更改 K2-Divider 的值来更改系统操作频率,可以直接连接到设备的功耗。因此,必须谨慎行事。


当必须修改系统 PLL 输出频率的频率时,应遵循以下顺序:


应禁用为失去锁定而生成的 SMU 警报。


CCU 使用不同的时钟源时,可以配置系统 PLL 并检查其位置 DCO 锁定状态。第一个目标频率的选择方式应与 CCU 当前使用的目标频率相匹配,或仅略高一些。这可以避免在以后切换至系统 PLL 时发生系统操作频率 (因此也避免功耗) 的大变化。应按以下方式选择 P N 分频因子(divider):


  • 选择 P N 时, fDCO位于其允许值的下半部分。 这会导致功耗略有降低,但抖动略有增加。

  • 选择 P N 时, fDCO位于其允许值的上部区域。 这会导致功耗略有增加,但抖动略有降低。


通过更新 P N K2 分频因子完成第一次PLL时钟配置后,应检查 DCO 锁定状态指示 (SYSPLLSTAT.LOCK = 1)


系统 PLL 锁定后,可以切换至系统 PLL。系统 PLL 丢失锁定事件的 SMU 状态标志应被清除,然后再次启用SMU监控。


现在只能通过更改 K2-Divider 来配置目标系统 PLL 输出目标频率。根据 K2-Divider 的值,选择输出时钟的周期时间。这可能会对使用外部通信接口的操作产生影响。多步更改 k2-Divider ,以避免输出频率发生大变化,从而避免功耗发生大变化。


注意

  • 建议配置完P N 分频器(divider)的新值后重置 DCO 锁定检测 (SYSPLLCON0.RESLD = 1) ,这样就能得到一个芯片预定义好的DCO锁的检测时间(让DCO锁有充足时间检测并锁定) 。

  • 由于两个 PLL System PLL and Peripheral PLL)的紧急从 PLL 切换至备用时钟同时激活,强烈建议仅在设置了外围 PLL 并将其锁定到目标频率时,才将系统时钟切换至系统 PLL。如果执行了顺序设置,则可能会发生外设 PLL 在设置过程中丢失锁定事件,这也会导致系统时钟切换至备用时钟。

  • 建议在设置 DCO 频率并锁定系统 PLL 后步进的设置系统 PLL K2-Divider (降低功率突变冲击)。此外,用户必须在再次更改 SYSPLLCON1.K2DIV 值之前检查 SYSPLLSTAT.K2RDY =1SYSPLLCON1.K2DIV 寄存器在上一次写入仍在进行时被锁定,如 SYSPLLSTAT.K2RDY =0 所示。


System PLL Lock Detection


系统 PLL 具有锁定检测(lock detection)功能,用于监控系统 PLL DCO 部分,以区分稳定和不稳定的 DCO 电路行为。如果两个输入fREF  fDIV 的差异太大,锁定探测器(lock detector)会将 DCO 电路标记为不稳定,因此 DCO 的输出fDCO. 低于某一级别的一个或两个输入频率的变化不会被锁定标记,因为 DCO 可以处理小的变化且保证系统没有任何问题。


System PLL Loss-of-Lock Event

由于晶体 / 陶瓷谐振器或外部时钟线断裂,系统PLL 可能会解锁。在这种情况下,会生成 SMU 警报事件。


System PLL Power Down Mode

系统 PLL 提供断电模式。如果根本不需要外围 PLL ,则可以进入此模式以节省电源。通过设置位 SYSPLLCON0.PLLPWD 进入断电模式。当系统 PLL 处于断电模式时,不会生成系统PLL 输出频率。


Frequency Modulation

系统 PLL 输出频率 fPLL0还可以通过低频调制进行修改,以减少 EMI。随机序列被添加到 DCO ,从而形成随机调制的 fDCO 调制频率由 fREF定义。

调制通过位 SYSPLLCON0.MODEN 启用。 调制本身会在配置的调制幅度 (MA) 范围内随机改变 DCO 频率。调制振幅通过 SYSPLLCON2.MODCFG[9:0] 选择。


SYSPLLCON2.MODCFG[9:0] = HEX[(64 * (MA / 100)) * (fOSC / P) *(N/ fMV)]


Example: for MA = 1.25%; fOSC = 20 MHz; P = 2; N = 60; fMV = 3.6 MHz the resulting bit field setting is 0x85.


调制的执行方式是,调制所增加的累积抖动保持在JMOD以下 (有关定义的值,请参阅数据表)。调制本身通过 fREF进行监控,因此应使用尽可能最小的值配置分压器。


2.3 系统PLL寄存器

系统PLL状态寄存器

 

系统控制寄存器0

 

 

系统PLL配置寄存器1

 


2.4 外设时钟锁相环PLL

外设PLL配置基本和系统PLL类似,这里只给出时钟倍频图及其计算公式。

 

Figure 4 Peripheral PLL Block Diagram


fPLL1 = (N* fOSC) / (P * K2)


fPLL2 = (N* fOSC) / (P * K3 * 1.6) if DIVBY = 0 or fPLL2 = (N* fOSC) / (P * K3 * 2) if DIVBY = 1


fHSCT = fDCO / 2


通过配置外设PLL的配置寄存器就能配置P, K2, K3参数的具体值


2.5 PLL实际应用配置

需求1:配置fOSC100MHz.


公式:fPLL0 = (N* fOSC) / (P * K2)


fOSC == 20MHz


N = SYSPLLCON0.NDIV + 1 = 29(0x1D, 配置SYSPLLCON0.NDIV29) + 1 = 30

 


P = SYSPLLCON0.PDIV + 1 = 0(配置SYSPLLCON0.PDIV0) + 1 = 1

 


K2 = SYSPLLCON1.K2DIV + 1 = 5(配置SYSPLLCON1.K2DIV5) +1 = 6

 


fPLL0 = (N* fOSC) / (P * K2) = (30 * 20)/(1 * 6) = 100MHz


查看SYSPLLSTAT寄存器的PWDSTATK2RD位域来判断时钟配置结果。


需求2:配置fPLL1320MHz.

需求3:配置fPLL2200MHz.

需求4:配置fHSCT640MHz.


计算公式:


fPLL1 = (N* fOSC) / (P * K2)


fPLL2 = (N* fOSC) / (P * K3 * 1.6) if DIVBY = 0 or fPLL2 = (N* fOSC) / (P * K3 * 2) if DIVBY = 1


fHSCT = fDCO / 2


同样,我们配置:

N = 32

P = 1

K2 = 2

K3 = 2


fPLL1 = (N* fOSC) / (P * K2) = (32 * 20) / (1 * 2) = 320 MHz.


fPLL2 = (N* fOSC) / (P * K3 * 1.6) if DIVBY = 0 or fPLL2 = (N* fOSC) / (P * K3 * 2) if DIVBY = 1

= (32 * 20) / (1 * 2 * 1.6) = 200 MHz.


fHSCT = fDCO / 2 = = (N* fOSC) / (P) = 640 MHz.


示例代码:

#include "IfxScu_reg.h"#include "IfxSmu_reg.h"
static uint8 Startup_ClockInit_ConfigPLL(void){    Ifx_SCU_SYSPLLCON0 SysPLLCon0;    Ifx_SCU_PERPLLCON0 ScuPerPllCon0;    Ifx_SCU_PERPLLCON1 ScuPerPllCon1;    uint32 TimeoutCount;    uint8 Error = 0;        LockEndinit_Core0();
    /* Configure the system PLL */    SysPLLCon0.U = MODULE_SCU.SYSPLLCON0.U;    SysPLLCon0.B.PDIV  = 0x00;    SysPLLCon0.B.NDIV  = 0x1D;    SysPLLCon0.B.INSEL = 1// fOSC is used as clock source    MODULE_SCU.SYSPLLCON0.U   = SysPLLCon0.U;
    /* Configure the peripheral PLL */    ScuPerPllCon0.U       = MODULE_SCU.PERPLLCON0.U;    ScuPerPllCon0.B.DIVBY = 0x00;    ScuPerPllCon0.B.PDIV  = 0x00;    ScuPerPllCon0.B.NDIV  = 0x1F;    MODULE_SCU.PERPLLCON0.U      = ScuPerPllCon0.U;    /* Power up the system PLL and peripheral PLL */    MODULE_SCU.SYSPLLCON0.B.PLLPWD = 1;    MODULE_SCU.PERPLLCON0.B.PLLPWD = 1;     /* Check if the configuration is valid */    TimeoutCount = 0x3000;    while((MODULE_SCU.SYSPLLSTAT.B.PWDSTAT == 1U) || (MODULE_SCU.PERPLLSTAT.B.PWDSTAT == 1U))                                             {        if (((--(TimeoutCount)) <= 0)        {            (Error ) = 1;            break;        }    }  
/* Check if the configuration is valid */    TimeoutCount = 0x5000;    while((MODULE_SCU.SYSPLLSTAT.B.K2RDY == 0U) ||               (MODULE_SCU.PERPLLSTAT.B.K2RDY == 0U) ||              (MODULE_SCU.PERPLLSTAT.B.K3RDY == 0U))                                            {        if (((--TimeoutCount)) <= 0)        {            (Error ) = 1;            break;        }    }      MODULE_SCU.SYSPLLCON1.B.K2DIV = 5;
    ScuPerPllCon1.U = MODULE_SCU.PERPLLCON1.U;    ScuPerPllCon1.B.K2DIV = 1;    ScuPerPllCon1.B.K3DIV = 1;    MODULE_SCU.PERPLLCON1.U = ScuPerPllCon1.U;    TimeoutCount = 0x5000;
    while((MODULE_SCU.SYSPLLSTAT.B.K2RDY == 0U) ||
               (MODULE_SCU.PERPLLSTAT.B.K2RDY == 0U) ||
               (MODULE_SCU.PERPLLSTAT.B.K3RDY == 0U))                                           {        if (((--(TimeoutCount)) <= 0)        {            (Error ) = 1;            break;        }    }   /* Start PLL locking for latest set values*/    MODULE_SCU.SYSPLLCON0.B.RESLD = 1;      MODULE_SCU.PERPLLCON0.B.RESLD = 1;
   /*Wait for PLL lock to be set*/    TimeoutCount = 0x3000;    while((MODULE_SCU.SYSPLLSTAT.B.LOCK == 0U) || (MODULE_SCU.PERPLLSTAT.B.LOCK == 0U))                                             {        if (((--(TimeoutCount)) <= 0)        {            (Error ) = 1;            break;        }    }      UnlockEndinit_Core0();}

Note:下一篇文章介绍TC3xx芯片时钟系统的时钟分配CCU.



End

「汽车电子嵌入式在CSDN上同步推出AUTOSAR精进之路专栏,本专栏每个模块完全按实际项目中开发及维护过程来详细介绍。模块核心概念介绍、实际需求描述、实际工程配置、特殊需求介绍及背后原理、实际工程使用经验总结。目的是让读者看完每一个章节后能理解原理后根据需求完成一个模块的配置或者解决一个问题。」


点击文章最后左下角的阅读原文可以获取更多信息


或者复制如下链接到浏览器获取更多信息

https://blog.csdn.net/qq_36056498/article/details/132125693


文末福利




1
.如需汽车电子嵌入式收集的学习文档,
后台回复“

资料

即可免费下载;

2.为便于技术交流,创建了汽车电子嵌入式技术交流群,可尽情探讨AP,CP,DDS,SOME/IP等前沿热点话题,后台回复“加群”即可加入;



注:本文引用了一些第三方工具和文档,若有侵权,请联系作者删除!


推荐阅读

汽车电子嵌入式精彩文章汇总第一期:20210530-20230703

AUTOSAR 架构下EcuM唤醒源事件详解

AUTOSAR架构下NVM Block连续写及Default Value问题分析

AUTOSAR架构下NvM模块详细分析

AUTOSAR架构下报文掉线超时不上报问题分析

Classic Autosar下的以太网通讯架构概览

通信中间件Someip服务化通信

AUTOSAR架构下Fee详细分析

TC37x芯片FLASH基本概念介绍

AUTOSAR架构下Fls详细分析

TC3xx芯片DMU介绍

TC3xx芯片MPU介绍

TC3xx芯片的Trap详解

AUTOSAR架构下的OS错误处理

AUTOSAR架构下QM Application如何访问ASIL Application

AUTOSAR架构下多核启动

TC3xx芯片的Trap详解(二)

AUTOSAR架构下多核Shutdown

AUTOSAR架构下多核通信

RH850U2A芯片平台Spinlock的底层实现

End



欢迎点赞,关注,转发,在看,您的每一次鼓励,都是我最大的动力!

汽车电子嵌入式

微信扫描二维码,关注我的公众号

评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 54浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 86浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 155浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 70浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 59浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦