上下拉电阻会增强驱动能力吗?

电源研发精英圈 2023-11-29 20:00

最近看到一个关于上下拉电阻的问题,发现不少人认为上下拉电阻能够增强驱动能力。随后跟几个朋友讨论了一下,大家一致认为不存在上下拉电阻增强驱动能力这回事,因为除了OC输出这类特殊结构外,上下拉电阻就是负载,只会减弱驱动力。

但很多经验肯定不是空穴来风,秉承工程师的钻研精神,我就试着找找这种说法的来源,问题本身很简单,思考的过程比较有趣。


二极管逻辑


今天已经很难看到二极管逻辑电路了,其实用性也不算高,不过因为电路简单,非常适合用来理解基本概念。

一个最简单的二极管与门如下图。与门实现逻辑与操作Y=A&B,即A或者B任意为L的时候,输出Y为L,只有当A和B都为H时,Y才为H。

    上图,基本二极管与门。


假设二极管无导通压降,在这个电路中,二极管充当了单向开关的角色,当A和B等于VDD时,两根二极管反向截至,Y被电阻上拉到VDD,这是Y就是H;当A或者B任意一端为GND时,二极管导通,因为二极管导通时电阻很小,远小于上拉电阻,所以Y被拉到了GND,即逻辑L。

至于二极管或门,只要把二极管转一下,再把电阻从拉到VDD改成拉到GND就可以了,非常简单。


    上图,基本二极管或门。


基本原理


你看,在这么原始的逻辑电路中就已经出现了上下拉电阻,这里面的原理也非常简单粗暴:利用开关的闭合(电阻为0)和开启(电阻无穷大)的特性,配合电阻,就可以轻松实现两种电压的输出。这种电路还有一个变形,就是用恒流源取代电阻,一方面集成电路工艺,恒流源比电阻更容易获得,另一方面恒流源的驱动能力也更好。根据开关和电阻(或恒流源)的相对位置,有以下基本电路:即开关接到GND(L)或开关接到VDD(H)。

    上图,几种开关电路接法。


这几种电路都是由开关的闭合或开启决定了VOUT是VDD还是GND。开关的相对位置不同,还决定了电路在某一状态下的驱动能力:开关的导通电阻为0,可视为驱动力无穷大,可是电阻(或恒流源)的驱动能力呢,只有VDD/R(或者恒流I),这就导致了电路在输出H或L的时候驱动能力不对称(换一个说法,就是电路在输出H或者L的时候,输出阻抗不一样)。

除了驱动能力的问题,这种单开关加电阻的模式还会带来静态功耗的问题,因为只要开关闭合,不管外部有没有负载,都会消耗电流。

既然开关的驱动力比电阻强,那么能不能把电阻也换成开关?恭喜你,发现了现代CMOS逻辑电路的基本单元:俩互补的开关。这样不管输出H还是输出L,驱动能力都是无穷大!好的,这时候上下拉电阻就不见了。

这样两个开关的电路还多出来了一种状态:当两个开关都开启时,VOUT即不是VDD也不是GND,而是一个悬空的状态(即高阻态,Hi-Z),这时候外部给什么信号它就是什么状态。这样又出现了一个新的逻辑门大类:三态逻辑门。

    上图,互补开关电路。


上下拉电阻增强驱动能力?


很多经验不是空穴来风,只是在流传的过程中丢失了重要的前提条件。上一节也看到了有一些逻辑器件,他们输出高和输出低时的驱动能力差别很大。

TTL(70xx、74Fxx、74Sxx、74LSxx等)家族的器件就属于这种类型,如下图是7404(TTL反相器)的原理图,由于非对称的输出级设计,输出为高时驱动能力只有0.4mA,而输出低时居然能输出16mA的电流(手册中的输出电流不是晶体管或者电路本身的极限,而是超过这个电流以后,输出的电压可能无法满足逻辑族的要求)。


    上图,7404的简化电路。


这个时候在输出端口外加一个上拉电阻,就可等效以增强端口在输出H时的驱动能力,但代价是端口输出L时,驱动能力相应地减弱,不过这时候芯片输出能力足够强,用这点代价来换取另一个状态下驱动能力的增强,还是划算。

    上图,带上拉电阻的7404。


下表是仿真有无上拉电阻时,负载电流与输出电压的关系,可以看到上拉电阻确实增强了在一定负载下的输出电压,不过当负载电流较大时效果并不明显,而且边际效应也很显著,当上拉电阻减小到一定程度以后,增强效果也不太显著,而且会大大增加静态功耗。

    上表,带不同上拉电阻的7404输出电压与负载电流的关系。


既然非对称的输出级有这样的问题,那为啥不能把这个驱动器设计成上下对称的呢?

一方面,如果要设计成上下对称的结构,上管需要用P管,而当时的工艺限制,P管各方面性能都不如N管,速度、功耗和成本都不是很划算,所以能看到很多上年代的芯片,内部几乎没有P管(包括MOS工艺的器件也是)。

另一方面,TTL输入结构的特点,输入为H时所需电流很小,而输入为L所需的输入电流很大,这样对输出L时的驱动能力要求就很高,反而对输出H时没有驱动能力要求(TTL输入悬空时等效为H)。

但TTL的这种特点,又会带来一个比较麻烦的问题:下拉电阻值需要很大才能满足要求,而下拉电阻太大则会导致输出高时负载太重以至于无法达到规定电压,所以TTL要尽量避免使用下拉。

下图是仿真结果,因为这是一个反相器,所以下拉时输出高是所期望的,而下拉电阻超过1.8kΩ时已经无法满足TTL定义的最低高电平标准了;而上拉时,就算上拉电阻达到20kΩ,也丝毫不影响输出。


    上表,TTL上下拉电阻取值与输出电压的关系。


CMOS电路


相信现在已经没多少人会在设计时选用TTL家族的器件了,可能多数人都没接触过这类器件,最常用的还是CMOS家族(HC、HCT、LVC、CD4000等)。

CMOS家族的东西就比较简单粗暴,上下对称的结构,上下管驱动能力也基本一致,这个时候输出的上下拉电阻对增强驱动能力几乎没有帮助不说,还加重了负载,属于得不偿失(其实多数情况下是无关痛痒)。

下图是基本的CMOS反相器,只需要一对互补的MOS管即可实现(现实中的CMOS反相器一般是三对这种管子级联出来的,为了提高开环增益)。


但是CMOS器件的输入悬空时,不会被拉向任何一个方向,处于一种浮空的状态,这样会造成输出紊乱,不是我们所希望的结果,这种情况下需要在输入端接入上拉或者下拉电阻给电路提供一个确定的状态。一般可拔插的对外接口(如JTAG)需要在I/O上加上上下拉电阻,有三态的总线视工作情况也可能需要上下拉,不过大多数的CMOS电路不需要额外的上下拉电阻。

    上图,CMOS器件在使用是一般要加上下来避免输入悬空。


因为CMOS输入是电压控制型,输入阻抗很高,所以上下拉电阻的值可以很大,理论上用MΩ级别的电阻都没问题。

不过理论归理论,工程师得认清现实。现实的CMOS输入结构,为了保护MOS管的栅极,会在栅极上加入ESD二极管,二极管反向偏置的时候是有漏电流的,还会随温度的升高还会指数增长!所以CMOS电路的上下拉电阻一般在100kΩ以下,一些制程比较先进的CPU,I/O口的漏电流或者上下拉电流较大,上下拉电阻一般取在几kΩ级别。所以设计上下拉电阻前一定要仔细阅读芯片手册,查查I/O的输入电流,看看取什么样的电阻值才合理。

    上图,CMOS输入有ESD二极管。


其他需要上下拉的情况


开集(Open-Collector)和开漏(Open-Drain)的输出结构往往也需要加上拉电阻:理清推挽、开漏、OC、OD的特点与应用。OC和OD输出结构只有下管,所以只能输出L和高阻(Hi-Z)两种状态,而高阻态是难以被电路识别的,所以需要合适的上拉电阻把高阻态转变为高态。

    上图,OC(左)和OD(右)输出结构。


虽然OC和OD输出结构看起来很复古,使用时也需要外接电阻有点麻烦,但这种结构最大的好处就是可以做线与,也就是多个OC或者OD可以接到一起,只要其中一个输出L,总线就是L,这在多外设中断和电源时序控制方面很常用。

    上图,OC/OD的线与接法。

    

I2C也是OC/OD结构,这样很轻松就能在一条数据线上双向传输数据而不需要额外的方向控制信号,而CAN总线则巧妙地利用线与特性来实现总线仲裁。

在处理OC或者OD电路的时候,一定要注意评估总线负载电容、上拉电阻与所需速度的关系,负载电容越大,速度越快,所需的上拉电阻要越小:通俗理解STM32中的上/下拉电阻。比如I2C总线,如果只挂载了一片从设备,使用4.75kΩ的上拉电阻可能就满足400kHz的总线要求了,但如果挂了10片从设备呢,1kΩ的上拉电阻也不一定能搞定100kHz的总线速度,这种时候可能得考虑总线负载隔离或者降低总线速度了。

下图是在200pF负载电容情况下,上拉电阻为500Ω、1kΩ、2kΩ、4.75kΩ和10kΩ下的波形,可以看到上拉电阻越大,对电容充电速度越慢,所以上升沿也越慢,当上拉电阻不合适时上升沿已经严重变形,无法保证正常工作。


    上图,OC电路不同上拉电阻对波形的影响。

逻辑反相器可以当成放大器来用!不是开玩笑,我还真见过产品上用这种骚操作的,只需要把反相器接成反向放大器就可以了,不过逻辑器件当线性器件用,性能嘛...

    上图,逻辑反相器(非门)当成线性放大器用。


来源:

http://zhuanlan.zhihu.com/p/331819962


免责声明:本文转自网络,版权归原作者所有,如涉及作品版权问题,请及时与我们联系,谢谢!


加入粉丝交流群


张飞实战电子为公众号的各位粉丝,开通了专属学习交流群,想要加群学习讨论/领取文档资料的同学都可以扫描图中运营二维码一键加入哦~ 

(广告、同行勿入)

电源研发精英圈 开关电源研发工程师精英汇集的平台!我们将定期发送开关电源技术资料与行业新闻,欢迎各位关注。(关键字: 电源开发工程师,LED电源,LED驱动电源,电源工程师, 电源学习,电源知识,电源技术,线性电源,逆变电源,电源芯片,电源模块,电源系统)
评论
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 120浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 774浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 447浏览
  • 在过去的很长一段时间里,外卖市场呈现出美团和饿了么双寡头垄断的局面。美团凭借先发优势、强大的地推团队以及精细化的运营策略,在市场份额上长期占据领先地位。数据显示,截至2024年上半年,美团外卖以68.2%的市场份额领跑外卖行业,成为当之无愧的行业老大。其业务广泛覆盖,从一线城市的繁华商圈到二三线城市的大街小巷,几乎无处不在,为无数消费者提供便捷的外卖服务。饿了么作为阿里本地生活服务的重要一环,依托阿里强大的资金和技术支持,也在市场中站稳脚跟,以25.4%的份额位居第二。尽管市场份额上与美团有一定
    用户1742991715177 2025-05-06 19:43 152浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 525浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 391浏览
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 401浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 684浏览
  • 文/Leon编辑/cc孙聪颖‍《中国家族企业传承研究报告》显示,超四成“企二代” 明确表达接班意愿,展现出对家族企业延续发展的主动担当。中国研究数据服务平台(CNRDS)提供的精准数据进一步佐证:截至 2022 年,已有至少 280 家上市家族企业完成权杖交接,其中八成新任掌门人为创始人之子,凸显家族企业代际传承中 “子承父业” 的主流模式。然而,对于“企二代” 而言,接棒掌舵绝非易事。在瞬息万变的商业环境中,他们既要在白热化的市场竞争中开拓创新、引领企业突破发展瓶颈,又需应对来自父辈管理层的经
    华尔街科技眼 2025-05-06 18:17 66浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 561浏览
  •         信创产业含义的“信息技术应用创新”一词,最早公开信息见于2019年3月26日,在江苏南京召开的信息技术应用创新研讨会。本次大会主办单位为江苏省工业和信息化厅和中国电子工业标准化技术协会安全可靠工作委员会。        2019年5月16日,美国将华为列入实体清单,在未获得美国商务部许可的情况下,美国企业将无法向华为供应产品。       2019年6
    天涯书生 2025-05-11 10:41 63浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 762浏览
  • 在印度与巴基斯坦的军事对峙情境下,歼10C的出色表现如同一颗投入平静湖面的巨石,激起层层涟漪,深刻印证了“质量大于数量”这一铁律。军事领域,技术优势就是决定胜负的关键钥匙。歼10C凭借先进的航电系统、强大的武器挂载能力以及卓越的机动性能,在战场上大放异彩。它能够精准捕捉目标,迅速发动攻击,以一敌多却毫不逊色。与之形成鲜明对比的是,单纯依靠数量堆砌的军事力量,在面对先进技术装备时,往往显得力不从心。这一现象绝非局限于军事范畴,在当今社会的各个领域,“质量大于数量”都已成为不可逆转的趋势。在科技行业
    curton 2025-05-11 19:09 133浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 254浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦