linux下PCI驱动源码实例1,该源码缺少pci_fops的初始化:
// ATTENTION copied from /uboot_for_mpc/arch/powerpc/include/asm/signal.h
// Maybe it don't work with that
//____________________________________________________________
//____________________________________________________________
// Hardware specific part
static unsigned long ioport=0L, iolen=0L, memstart=0L, memlen=0L,flag0,flag1,flag2,temp=0L;
// private_data
struct _instance_data {
int counter; // just as a example (5-27)
// other instance specific data
};
// Interrupt Service Routine
static irqreturn_t pci_isr( int irq, void *dev_id, struct pt_regs *regs )
{
return IRQ_HANDLED;
}
// Check if this driver is for the new device
static int device_init(struct pci_dev *dev,
const struct pci_device_id *id)
{
int err=0; // temp variable
flag0=pci_resource_flags(dev, 0 );
flag1=pci_resource_flags(dev, 1 );
flag2=pci_resource_flags(dev, 2 );
printk("DEBUG: FLAGS0 = %u\n",flag0);
printk("DEBUG: FLAGS1 = %u\n",flag1);
printk("DEBUG: FLAGS2 = %u\n",flag2);
/*
* The following sequence checks if the resource is in the
* IO / Storage / Interrupt / DMA address space
* and prints the result in the dmesg log
*/
if(pci_resource_flags(dev,0) & IORESOURCE_IO)
{
// Ressource is in the IO address space
printk("DEBUG: IORESOURCE_IO\n");
}
else if (pci_resource_flags(dev,0) & IORESOURCE_MEM)
{
// Resource is in the Storage address space
printk("DEBUG: IORESOURCE_MEM\n");
}
else if (pci_resource_flags(dev,0) & IORESOURCE_IRQ)
{
// Resource is in the IRQ address space
printk("DEBUG: IORESOURCE_IRQ\n");
}
else if (pci_resource_flags(dev,0) & IORESOURCE_DMA)
{
// Resource is in the DMA address space
printk("DEBUG: IORESOURCE_DMA\n");
}
else
{
printk("DEBUG: NOTHING\n");
}
// allocate memory_region
memstart = pci_resource_start( dev, 0 );
memlen = pci_resource_len( dev, 0 );
if( request_mem_region( memstart, memlen, dev->dev.kobj.name )==NULL ) {
printk(KERN_ERR "Memory address conflict for device \"%s\"\n",
dev->dev.kobj.name);
return -EIO;
}
// allocate a interrupt
if(request_irq(dev->irq,pci_isr,SA_INTERRUPT|SA_SHIRQ,
"pci_drv",dev)) {
printk( KERN_ERR "pci_drv: IRQ %d not free.\n", dev->irq );
}
else
{
err=pci_enable_device( dev );
if(err==0) // enable device successful
{
return 0;
}
else // enable device not successful
{
return err;
}
}
// cleanup_mem
release_mem_region( memstart, memlen );
return -EIO;
}
// Function for deinitialization of the device
static void device_deinit( struct pci_dev *pdev )
{
free_irq( pdev->irq, pdev );
if( memstart )
release_mem_region( memstart, memlen );
}
static struct file_operations pci_fops;
static struct pci_device_id pci_drv_tbl[] __devinitdata = {
{ MY_VENDOR_ID, // manufacturer identifier
MY_DEVICE_ID, // device identifier
PCI_ANY_ID, // subsystem manufacturer identifier
PCI_ANY_ID, // subsystem device identifier
0, // device class
0, // mask for device class
0 }, // driver specific data
{ 0, }
};
static int driver_open( struct inode *geraetedatei, struct file *instance )
{
struct _instance_data *iptr;
iptr = (struct _instance_data *)kmalloc(sizeof(struct _instance_data),
GFP_KERNEL);
if( iptr==0 ) {
printk("not enough kernel mem\n");
return -ENOMEM;
}
/* replace the following line with your instructions */
iptr->counter= strlen("Hello World\n")+1; // just as a example (5-27)
instance->private_data = (void *)iptr;
return 0;
}
static void driver_close( struct file *instance )
{
if( instance->private_data )
kfree( instance->private_data );
}
static struct pci_driver pci_drv = {
.name= "pci_drv",
.id_table= pci_drv_tbl,
.probe= device_init,
.remove= device_deinit,
};
static int __init pci_drv_init(void)
{ // register the driver by the OS
if(register_chrdev(MAJOR_NR, DRIVER_NAME, &pci_fops)==0) {
if(pci_module_init(&pci_drv) == 0 ) // register by the subsystem
return 0;
unregister_chrdev(MAJOR_NR,DRIVER_NAME); // unregister if no subsystem support
}
return -EIO;
}
static void __exit pci_drv_exit(void)
{
pci_unregister_driver( &pci_drv );
unregister_chrdev(MAJOR_NR,DRIVER_NAME);
}
module_init(pci_drv_init);
module_exit(pci_drv_exit);
MODULE_LICENSE("GPL");
PCIE同PCI驱动的差异:
From a software standpoint, PCI and PCI Express devices are essentially the same. PCIe devices had the same configuration space, BARs, and (usually) support the same PCI INTx interrupts.一般情况下,两者基本保持一致
Example #1: Windows XP has no special knowledge of PCIe, but runs fine on PCIe systems.
Example #2: My company offers both PCI and PCIe versions of a peripheral board, and they use the same Windows/Linux driver package. The driver does not "know" the difference between the two boards.
However: PCIe devices frequently take advantage of "advanced" features, like MSI, Hotplugging, extended configuration space, etc. Many of these feature existed on legacy PCI, but were unused. If this is a device you are designing, it is up to you whether or not you implement these advanced features.但是pcie在一些高级特性上有优势,比如MSI(Message Signaled Interrupts)、Hotplugging(热插拔)、配置空间扩展等。
linux设备驱动程序框架:
Linux将所有外部设备看成是一类特殊文件,称之为“设备文件”,如果说系统调用是Linux内核和应用程序之间的接口,那么设备驱动程序则可以看成是Linux内核与外部设备之间的接口。设备驱动程序向应用程序屏蔽了硬件在实现上的细节,使得应用程序可以像操作普通文件一样来操作外部设备。
1. 字符设备和块设备
Linux抽象了对硬件的处理,所有的硬件设备都可以像普通文件一样来看待:它们可以使用和操作文件相同的、标准的系统调用接口来完成打开、关闭、读写和I/O控制操作,而驱动程序的主要任务也就是要实现这些系统调用函数。Linux系统中的所有硬件设备都使用一个特殊的设备文件来表示,例如,系统中的第一个IDE硬盘使用/dev/hda表示。每个设备文件对应有两个设备号:一个是主设备号,标识该设备的种类,也标识了该设备所使用的驱动程序;另一个是次设备号,标识使用同一设备驱动程序的不同硬件设备。设备文件的主设备号必须与设备驱动程序在登录该设备时申请的主设备号一致,否则用户进程将无法访问到设备驱动程序。
在Linux操作系统下有两类主要的设备文件:一类是字符设备,另一类则是块设备。字符设备是以字节为单位逐个进行I/O操作的设备,在对字符设备发出读写请求时,实际的硬件I/O紧接着就发生了,一般来说字符设备中的缓存是可有可无的,而且也不支持随机访问。块设备则是利用一块系统内存作为缓冲区,当用户进程对设备进行读写请求时,驱动程序先查看缓冲区中的内容,如果缓冲区中的数据能满足用户的要求就返回相应的数据,否则就调用相应的请求函数来进行实际的I/O操作。块设备主要是针对磁盘等慢速设备设计的,其目的是避免耗费过多的CPU时间来等待操作的完成。一般说来,PCI卡通常都属于字符设备。
所有已经注册(即已经加载了驱动程序)的硬件设备的主设备号可以从/proc/devices文件中得到。使用mknod命令可以创建指定类型的设备文件,同时为其分配相应的主设备号和次设备号。例如,下面的命令:
[ ]
struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char *, size_t, loff_t *);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long,
unsigned long, unsigned long, unsigned long);
};
驱动程序的注册与注销
设备的打开与释放
使用计数减1。
释放在file->private_data中分配的内存。
如果使用计算为0,则关闭设备。
检查设备相关错误,如设备尚未准备好等。
如果是第一次打开,则初始化硬件设备。
识别次设备号,如果有必要则更新读写操作的当前位置指针f_ops。
分配和填写要放在file->private_data里的数据结构。
使用计数增1。
设备的读写操作
设备的控制操作
设备的中断和轮询处理
pci_driver
struct pci_driver {
struct list_head node;
char *name;
const struct pci_device_id *id_table;
int (*probe) (struct pci_dev *dev, const struct pci_device_id *id);
void (*remove) (struct pci_dev *dev);
int (*save_state) (struct pci_dev *dev, u32 state);
int (*suspend)(struct pci_dev *dev, u32 state);
int (*resume) (struct pci_dev *dev);
int (*enable_wake) (struct pci_dev *dev, u32 state, int enable);
};
pci_dev
struct pci_dev {
struct list_head global_list;
struct list_head bus_list;
struct pci_bus *bus;
struct pci_bus *subordinate;
void *sysdata;
struct proc_dir_entry *procent;
unsigned int devfn;
unsigned short vendor;
unsigned short device;
unsigned short subsystem_vendor;
unsigned short subsystem_device;
unsigned int class;
u8 hdr_type;
u8 rom_base_reg;
struct pci_driver *driver;
void *driver_data;
u64 dma_mask;
u32 current_state;
unsigned short vendor_compatible[DEVICE_COUNT_COMPATIBLE];
unsigned short device_compatible[DEVICE_COUNT_COMPATIBLE];
unsigned int irq;
struct resource resource[DEVICE_COUNT_RESOURCE];
struct resource dma_resource[DEVICE_COUNT_DMA];
struct resource irq_resource[DEVICE_COUNT_IRQ];
char name[80];
char slot_name[8];
int active;
int ro;
unsigned short regs;
int (*prepare)(struct pci_dev *dev);
int (*activate)(struct pci_dev *dev);
int (*deactivate)(struct pci_dev *dev);
};
2. 基本框架
在用模块方式实现PCI设备驱动程序时,通常至少要实现以下几个部分:初始化设备模块、设备打开模块、数据读写和控制模块、中断处理模块、设备释放模块、设备卸载模块。下面给出一个典型的PCI设备驱动程序的基本框架,从中不难体会到这几个关键模块是如何组织起来的。
/* 指明该驱动程序适用于哪一些PCI设备 */
static struct pci_device_id demo_pci_tbl [] __initdata = {
{PCI_VENDOR_ID_DEMO, PCI_DEVICE_ID_DEMO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, DEMO},
{0,}
};
/* 对特定PCI设备进行描述的数据结构 */
struct demo_card {
unsigned int magic;
/* 使用链表保存所有同类的PCI设备 */
struct demo_card *next;
/* ... */
}
/* 中断处理模块 */
static void demo_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
/* ... */
}
/* 设备文件操作接口 */
static struct file_operations demo_fops = {
owner: THIS_MODULE, /* demo_fops所属的设备模块 */
read: demo_read, /* 读设备操作*/
write: demo_write, /* 写设备操作*/
ioctl: demo_ioctl, /* 控制设备操作*/
mmap: demo_mmap, /* 内存重映射操作*/
open: demo_open, /* 打开设备操作*/
release: demo_release /* 释放设备操作*/
/* ... */
};
/* 设备模块信息 */
static struct pci_driver demo_pci_driver = {
name: demo_MODULE_NAME, /* 设备模块名称 */
id_table: demo_pci_tbl, /* 能够驱动的设备列表 */
probe: demo_probe, /* 查找并初始化设备 */
remove: demo_remove /* 卸载设备模块 */
/* ... */
};
static int __init demo_init_module (void)
{
/* ... */
}
static void __exit demo_cleanup_module (void)
{
pci_unregister_driver(&demo_pci_driver);
}
/* 加载驱动程序模块入口 */
module_init(demo_init_module);
/* 卸载驱动程序模块入口 */
module_exit(demo_cleanup_module);
上面这段代码给出了一个典型的PCI设备驱动程序的框架,是一种相对固定的模式。需要注意的是,同加载和卸载模块相关的函数或数据结构都要在前面加上__init、__exit等标志符,以使同普通函数区分开来。构造出这样一个框架之后,接下去的工作就是如何完成框架内的各个功能模块了。
3. 初始化设备模块
在Linux系统下,想要完成对一个PCI设备的初始化,需要完成以下工作:
检查PCI总线是否被Linux内核支持;
检查设备是否插在总线插槽上,如果在的话则保存它所占用的插槽的位置等信息。
读出配置头中的信息提供给驱动程序使用。
当Linux内核启动并完成对所有PCI设备进行扫描、登录和分配资源等初始化操作的同时,会建立起系统中所有PCI设备的拓扑结构,此后当PCI驱动程序需要对设备进行初始化时,一般都会调用如下的代码:
static int __init demo_init_module (void)
{
/* 检查系统是否支持PCI总线 */
if (!pci_present())
return -ENODEV;
/* 注册硬件驱动程序 */
if (!pci_register_driver(&demo_pci_driver)) {
pci_unregister_driver(&demo_pci_driver);
return -ENODEV;
}
/* ... */
return 0;
}
驱动程序首先调用函数pci_present( )检查PCI总线是否已经被Linux内核支持,如果系统支持PCI总线结构,这个函数的返回值为0,如果驱动程序在调用这个函数时得到了一个非0的返回值,那么驱动程序就必须得中止自己的任务了。在2.4以前的内核中,需要手工调用pci_find_device( )函数来查找PCI设备,但在2.4以后更好的办法是调用pci_register_driver( )函数来注册PCI设备的驱动程序,此时需要提供一个pci_driver结构,在该结构中给出的probe探测例程将负责完成对硬件的检测工作。
static int __init demo_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_id)
{
struct demo_card *card;
/* 启动PCI设备 */
if (pci_enable_device(pci_dev))
return -EIO;
/* 设备DMA标识 */
if (pci_set_dma_mask(pci_dev, DEMO_DMA_MASK)) {
return -ENODEV;
}
/* 在内核空间中动态申请内存 */
if ((card = kmalloc(sizeof(struct demo_card), GFP_KERNEL)) == NULL) {
printk(KERN_ERR "pci_demo: out of memory\n");
return -ENOMEM;
}
memset(card, 0, sizeof(*card));
/* 读取PCI配置信息 */
card->iobase = pci_resource_start (pci_dev, 1);
card->pci_dev = pci_dev;
card->pci_id = pci_id->device;
card->irq = pci_dev->irq;
card->next = devs;
card->magic = DEMO_CARD_MAGIC;
/* 设置成总线主DMA模式 */
pci_set_master(pci_dev);
/* 申请I/O资源 */
request_region(card->iobase, 64, card_names[pci_id->driver_data]);
return 0;
}
4. 打开设备模块
在这个模块里主要实现申请中断、检查读写模式以及申请对设备的控制权等。在申请控制权的时候,非阻塞方式遇忙返回,否则进程主动接受调度,进入睡眠状态,等待其它进程释放对设备的控制权。
static int demo_open(struct inode *inode, struct file *file)
{
/* 申请中断,注册中断处理程序 */
request_irq(card->irq, &demo_interrupt, SA_SHIRQ,
card_names[pci_id->driver_data], card)) {
/* 检查读写模式 */
if(file->f_mode & FMODE_READ) {
/* ... */
}
if(file->f_mode & FMODE_WRITE) {
/* ... */
}
/* 申请对设备的控制权 */
down(&card->open_sem);
while(card->open_mode & file->f_mode) {
if (file->f_flags & O_NONBLOCK) {
/* NONBLOCK模式,返回-EBUSY */
up(&card->open_sem);
return -EBUSY;
} else {
/* 等待调度,获得控制权 */
card->open_mode |= f_mode & (FMODE_READ | FMODE_WRITE);
up(&card->open_sem);
/* 设备打开计数增1 */
MOD_INC_USE_COUNT;
/* ... */
}
}
}
5. 数据读写和控制信息模块
PCI设备驱动程序可以通过demo_fops 结构中的函数demo_ioctl( ),向应用程序提供对硬件进行控制的接口。例如,通过它可以从I/O寄存器里读取一个数据,并传送到用户空间里:
static int demo_ioctl(struct inode *inode, struct file *file,
unsigned int cmd, unsigned long arg)
{
/* ... */
switch(cmd) {
case DEMO_RDATA:
/* 从I/O端口读取4字节的数据 */
val = inl(card->iobae + 0x10);
/* 将读取的数据传输到用户空间 */
return 0;
}
/* ... */
}
事实上,在demo_fops里还可以实现诸如demo_read( )、demo_mmap( )等操作,Linux内核源码中的driver目录里提供了许多设备驱动程序的源代码,找那里可以找到类似的例子。在对资源的访问方式上,除了有I/O指令以外,还有对外设I/O内存的访问。对这些内存的操作一方面可以通过把I/O内存重新映射后作为普通内存进行操作,另一方面也可以通过总线主DMA(Bus Master DMA)的方式让设备把数据通过DMA传送到系统内存中。
6. 中断处理模块
PC的中断资源比较有限,只有0~15的中断号,因此大部分外部设备都是以共享的形式申请中断号的。当中断发生的时候,中断处理程序首先负责对中断进行识别,然后再做进一步的处理。
static void demo_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct demo_card *card = (struct demo_card *)dev_id;
u32 status;
spin_lock(&card->lock);
/* 识别中断 */
status = inl(card->iobase + GLOB_STA);
if(!(status & INT_MASK))
{
spin_unlock(&card->lock);
return; /* not for us */
}
/* 告诉设备已经收到中断 */
outl(status & INT_MASK, card->iobase + GLOB_STA);
spin_unlock(&card->lock);
/* 其它进一步的处理,如更新DMA缓冲区指针等 */
}
7. 释放设备模块
释放设备模块主要负责释放对设备的控制权,释放占用的内存和中断等,所做的事情正好与打开设备模块相反:
static int demo_release(struct inode *inode, struct file *file)
{
/* ... */
/* 释放对设备的控制权 */
card->open_mode &= (FMODE_READ | FMODE_WRITE);
/* 唤醒其它等待获取控制权的进程 */
wake_up(&card->open_wait);
up(&card->open_sem);
/* 释放中断 */
free_irq(card->irq, card);
/* 设备打开计数增1 */
MOD_DEC_USE_COUNT;
/* ... */
}
8. 卸载设备模块
卸载设备模块与初始化设备模块是相对应的,实现起来相对比较简单,主要是调用函数pci_unregister_driver( )从Linux内核中注销设备驱动程序:
static void __exit demo_cleanup_module (void)
{
pci_unregister_driver(&demo_pci_driver);
}
(1)编写Makefile文件
makefile文件实例
ifneq ($(KERNELRELEASE),)
obj-m:=hello.o
else
#generate the path
CURRENT_PATH:=$(shell pwd)
#the absolute path
LINUX_KERNEL_PATH:=/lib/modules/$(shell uname -r)/build
#complie object
default:
make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules
clean:
make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) clean
endif
obj-m 表示该文件要作为模块编译 obj-y则表示该文件要编译进内核
正常情况下只需修改hello.o即可
(2)执行make命令生成 *.ko 文件
(3)sudo insmod *.ko加载驱动模块
(4)sudo rmmod *.ko卸载驱动模块
(5)使用dmesg | tail -10来查看内核输出的最后十条信息
(6)使用modinfo *.ko来查看模块信息
PCI IO/内存地址区域
一个PCI设备可实现多达6个I/O地址区域,每个区域既可以使内存也可以是I/O地址。在内核中PCI设备的I/O区域已经被集成到通用资源管理器。因此,我们无需访问配置变量来了解设备被映射到内存或者I/O空间的何处。获得区域信息的首选接口是下面的宏定义:
#define pci_resource_start(dev, bar)((dev)->resource[(bar)].start)
该宏返回六个PCI I/O区域之一的首地址(内存地址或者I/O端口号).该区域由整数的bar(base address register,基地址寄存器)指定,bar取值为0到5。
#define pci_resource_end(dev, bar)((dev)->resource[(bar)].end)
该宏返回第bar个I/O区域的首地址。注意这是最后一个可用的地址,而不是该区域之后的第一个地址。
#define pci_resource_flags(dev, bar)((dev)->resource[(bar)].flags)
该宏返回和该资源相关联的标志。资源标志用来定义单个资源的特性,对与PCI I/O区域相关的PCI资源,该信息从基地址寄存器中获得,但对于和PCI无关的资源,它可能来自其他地方。所有资源标志定义在。
(1)DMA循环缓冲区的分配与实现:
对于高速数据信号的采集处理,需要在驱动程序的初始化模块(probe)中申请大量的DMA循环缓冲区,申请的大小直接关系着能否实时对高速数据处理的成败。直接内存访问(DMA)是一种硬件机制,允许外围设备和主内存直接直接传输I/O数据,避免了大量的计算开销。
(2) Linux内核的内存分区段:
三个区段,可用于DMA的内存,常规内存以及高端内存。
· 通常的内存分配发生在常规内存区,但是通过设置内存标识也可以请求在其他区段中分配。可用于DMA的内存指存在于特别地址范围内的内存,外设可以利用这些内存执行DMA访问,进行数据通信传输。
· DMA循环缓冲区的分配要求:物理连续,DMA可以访问,足够大。
(3)Linux内存分配函数:
· Linux系统使用虚拟地址,内存分配函数提供的都是虚拟地址,通过virt_to_bus转换才能得到物理地址。
· 分配内核内存空间的函数:kmalloc实现小于128KB的内核内存申请,申请空间物理连续;__get_free_pages实现最大4MB的内存申请,以页为单位,所申请空间物理连续;vmalloc分配的虚拟地址空间连续,但在物理上可能不连续。
· Linux内核中专门提供了用于PCI设备申请内核内存的函数pci_alloc_consistent,支持按字节长度申请,该函数调用__get_free_pages,故一次最大为4MB。
(4) DMA数据传输的方式:
· 一种是软件发起的数据请求(例如通过read函数调用),另一种是硬件异步将数据传给系统。对于数据采集设备,即便没有进程去读取数据,也要不断写入,随时等待进程调用,因此驱动程序应该维护一个环形缓冲区,当read调用时可以随时返回给用户空间需要的数据。
(5)PCIe中向CPU发起中断请求的方式:
· 消息信号中断(MSI),INTx中断。
· 在MSI中断方式下,设备通过向OS预先分配的主存空间写入特定数据的方式请求CPU的中断服务,为PCIe系统首选的中断信号机制,对于PCIe到PCI/PCI-X的桥接设备和不能使用MSI机制的传统端点设备,采用INTx虚拟中断机制。
· PCIe设备注册中断时使用共享中断方式,Linux系统通过request_irq实现中断处理程序的注册,调用位置在设备第一次打开,硬件产生中断之前;同样,free_irq时机在最后一次关闭设备,硬件不用中断处理器之后。
· 中断处理函数的功能是将有关中断接收的信息反馈给设备,并对数据进行相应读写。中断信号到来,系统调用相应的中断处理函数,函数判断中断号是否匹配,若是,则清除中断寄存器相应的位,即在驱动程序发起新的DMA之前设备不会产生其他中断,然后进行相应处理。
(6)数据读写和ioctl控制:
· 数据读写:应用进程不需要数据时,驱动程序动态维护DMA环形缓冲区,当应用进程请求数据,驱动程序通过Linux内核提供copy_from_user()/copy_to_user()实现内核态和用户态之间的数据拷贝。
· 硬件控制:用户空间经常回去请求设备锁门,报告错误信息,设置寄存器等,这些操作都通过ioctl支持,可以对PCIe卡给定的寄存器空间进行配置。
(7)中断处理程序的注册:
· 中断号在BIOS初始化阶段分配并写入设备配置空间,然后Linux在建立pci_dev时从配置空间中读出该中断号并写入pci_dev的irq成员中,所以注册中断程序时直接从pci_dev中读取就行。
· 当设备发生中断,8259A将中断号发给CPU,CPU根据中断号找到中断处理程序,执行。
(8)DMA数据传输机制的产生:
· 传统经典过程:数据到达网卡 -> 网卡产生一个中断给内核 -> 内核使用 I/O 指令,从网卡I/O区域中去读取数据。这种方式,当大流量数据到来时,网卡会产生大量中断,内核在中断上下文中,会浪费大量资源处理中断本身。
· 改进:NAPI,即轮询,即内核屏蔽中断,隔一定时间去问网卡,是否有数据。则在数据量小的情况下,这种方式会浪费大量资源。
· 另一个问题,CPU到网卡的I/O区域,包括I/O寄存器和I/O内存中读取,再放到系统物理内存,都占用大量CPU资源,做改进,即有了DMA,让网卡直接从主内存之间读写自己的I/O数据。
· 首先,内核在主内存中为收发数据建立一个环形的缓冲队列(DMA环形缓冲区),内核将这个缓冲区通过DMA映射,将这个队列交给网卡;网卡收到数据,直接放进环形缓冲区,即直接放到主内存,然后向系统产生中断;
· 内核收到中断,取消DMA映射,可以直接从主内存中读取数据。
来源:https://my.oschina.net/u/3732258
‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ END ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧