1030nm单光子探测激光雷达技术

MEMS 2023-11-25 00:02

1 μm波段单光子探测激光雷达因大气透过率高、背景噪声低、红外隐蔽性好、激光脉冲能量高,在远距离激光测距和成像方向极具发展前景。然而,传统的1064 nm激光器缺少对应的高性能的单光子探测器,成为1 μm波段单光子探测激光雷达的发展瓶颈。盖革Si APD单光子探测器(SiSPAD)具有优异的探测性能,但是其在1064 nm波长的探测效率极低。

据麦姆斯咨询报道,近期,华东师范大学精密光谱科学与技术国家重点实验室的科研团队在《激光与红外》期刊上发表了以“1030 nm单光子探测激光雷达技术”为主题的文章。该文章第一作者为杨函霖,主要从事近红外单光子测距与成像技术方面的研究工作;通讯作者为吴光研究员,主要从事低噪声高速单光子探测技术方面的研究工作。

针对这个激光器与探测器的矛盾,本文研究1030 nm波长单光子探测激光雷达技术,SiSPAD在1030 nm的探测效率是1064 nm的2.9倍,相同条件的单光子探测激光雷达探测距离提升67.8%。另外,本文搭建双棱镜光束扫描装置,演示了1030 nm波长的单光子三维成像。

SiSPAD在1 μm波段探测效率

SPAD的探测概率由量子效率和光生载流子触发雪崩电流概率组成。量子效率指入射光子被APD吸收层的半导体材料吸收后产生光生载流子的概率,其中最主要的吸收形式为本征吸收。半导体材料对不同波长入射光子的本征吸收强度不同,导致SPAD的探测效率存在差异。在1 μm波段,Si的本征吸收强度随波长增大而降低。本文首先测量SiSPAD在1 μm波段的探测效率,从而分析比较1030 nm与1064 nm两种波长单光子探测激光雷达的性能差异。本文采用德国Laser Components公司的Si APD器件(Sap500),发展主动抑制电路,研制成SiSPAD,所测探测效率与其他同类产品存在绝对数值上的差异,但探测效率随波长的变化趋势是一致的。在暗室中对SiSPAD探测效率标定结果如图1所示。从标定结果可见,SiSPAD在1 μm附近的探测效率随波长增长而快速下降,其在1064 nm波长的探测效率仅1.1%,而在1030 nm波长的探测效率达到3.2%,两者存在约2.9倍差异。

图1 SiSPAD探测效率标定结果

使用雷达方程来计算探测效率差距对测距能力的影响。1030 nm激光雷达的探测距离比1064 nm激光雷达高出约67.8%,更高的探测距离意味着更大的应用潜力。另一方面,激光光源的性能也与探测距离密切相关。现主流的1064 nm单光子探测激光雷达多使用Nd:YAG激光器作为光源,该激光器技术成熟且应用广泛。相比之下,虽然使用Yb:YAG晶体的1030 nm激光器相关研究较少,但该晶体拥有量子效率高、能级结构简单、无激发态吸收和上转换作用、无浓度猝灭现象,高吸收带宽等独特优势。已经有许多高性能的1030 nm激光器产品相继推出,解决了1030 nm单光子探测激光雷达的光源问题。虽然1064 nm激光器输出功率高于1030 nm激光器,但对于汽车自动驾驶、地形测绘等需要符合人眼安全条件的应用领域,现有1030 nm激光器已满足功率要求。

单光子探测激光雷达实验设计

图2为单光子探测激光雷达系统示意图。实验中使用的1030 nm固态激光器输出脉宽为1.5 ns、重复频率为1.5 kHz,输出光束的直径为1.1 mm、发散角为1.2 mrad、单脉冲能量最大可调至100 μJ。1064 nm激光器的输出脉宽为2.2 ns、重复频率为1 kHz、光束的直径为1 mm,发散角为3.5 mrad,单脉冲能量0.5 μJ。两波长激光器可以拆卸替换,便于开展两个波长的单光子测距对比实验。出射光束经过组合滤光片衰减后,由有机玻璃板进行分光(分光比为3.7:96.2),其中反射光束进入PIN光电二极管产生同步信号,透射光束穿过50 mm直径的打孔反射镜(打孔孔径10 mm)后出射。扫描装置采用双棱镜设计,由一对直径25.4 mm、顶角18.2°的楔形棱镜组成,并使用两个金属传感器反馈棱镜的旋转角度。1030 nm窄带滤光片用于抑制背景噪声。同步信号、金属传感器两路方位角信号、SPAD总共4路信号输入到TCSPC系统中记录。

图2 单光子探测激光雷达系统

1030 nm / 1064 nm单光子测距对比

本文分别开展1030 nm和1064 nm波长的单光子测距实验,以验证两个波长探测效率差异对单光子测距能力的影响。按照图2原理图搭建单光子探测激光雷达,固定双棱镜的方位角使激光光束方向恒定,并通过改变滤光片调节脉冲强度,将两个光源调整到单脉冲能量基本一致。同时确保探测器计数保持在平均每脉冲0.1个光子以下,以规避多光子计数的影响。经过测试,光路中打孔反射镜、耦合透镜等其他光学原件在两波长处的光学损耗差异可以忽略不计。每个波长均测试5次,单次累计时间t=20 s,测距目标为实验室走廊后面60 m远的白色墙壁,图3展示了其中两次测量的结果。

图3 1030 nm / 1064 nm测距结果

图3中1030 nm测距得到的信号峰在高度上明显超过1064 nm。因为1030 nm激光器功率比1064 nm激光器更大,其初始出射光束被滤光片反射回来并散射到周围后会对探测器产生干扰,所以两波长的噪声强度存在差异。本文在后续分析中先做了去底噪处理。两个波长测距时雷达系统的位置有一些变动,导致测距结果不一致。该差异在后续计算中已经代入,不影响验证比对。使用Matlab对两个波长的测距结果进行积分,得到信号峰内回波信号的总和,结果如表1所示。

表1 相关参数和测距结果

单光子三维成像实验

扫描装置的性能高低是影响雷达光束在空间上指向精确与否的关键性因素。声光、电光偏转器等非机械性的扫描装置会引发光电效应等现象,因此存在通光孔径偏小和光束传输质量较差等问题。机械性扫描装置包括以旋转电机为代表的云台法、以振镜为代表的反射法和以楔形棱镜为代表的折射法。其中云台法大都体积笨重,无法高精度且快速的扫描;反射法因镜子角度改变量与光束偏转角度为2倍关系,在机械误差上更为敏感,面对机械震动等外界因素时抗干扰能力不足。与上述方法相比,双棱镜结构更为紧密、响应速度快、抗干扰能力更强,在复杂环境的适用性上也更好。

组成扫描装置的一对楔形棱镜安置在金属套筒中。套筒上安装有传动轮,通过传动带与步进电机相连,最高转速10 r/s。步进电机上安装了两个不同齿数的传动轮用于带动双棱镜旋转,其驱动信号由高精度信号发生器给出,双棱镜的方位角信息由棱镜套筒旁的两个金属传感器给出。双棱镜的转动速度由电机转速和各自传动轮齿数比共同决定,通过更换传动轮即可改变扫描轨迹。实验中的齿数比为50:47,扫描轨迹如图4(b)所示。

为进一步减少背景噪声,本文在打孔反射镜到单光子探测器的光路上用吸光材料做了遮蔽处理。配合带宽10 nm的窄带滤光片,背景噪声最终被控制在10 kHz以内。

图4 单光子成像点云图

为演示1030 nm单光子探测激光雷达的成像效果,本文在实验室周围选取了一个合适的场景。如图4(a)所示,整体场景可分为3层:距离最近的两辆汽车和两颗行道树、靠中间的灌木丛、以及最外层的办公楼外墙。扫描范围为一个顶角36°的圆锥,从系统到办公楼外墙的距离约50 m,最大扫描半径16 m。本文将连续扫描的轨迹平均划分为若干个像素点,用TCSPC技术处理单个像素点对应时间段内的所有回波信号。在多个脉冲周期累计后,背景噪声接近平均的分布在时间轴上,而与同步信号相关性强的目标信号集中累积在一处,形成计数值远超噪声的信号峰。设定一个比较阈值去噪后对该信号峰提取质心对应的时间T,即可求出该像素点的距离D=cT/2。

尽管在白天使用1030 nm单光子探测激光雷达也能获得目标场景的距离信息,但过高的背景计数会导致系统信噪比过低、运算处理时间过长,所以本章实验在夜间进行。设置扫描时间250 s,电机转速为0.2 r/s,双楔形棱镜分别转动50圈和47圈。每个像素点的累计时间为6.6 ms,扫描轨迹被划分为约38000个像素点。扫描结果如图4(c)、(d)所示。

图中目标场景的重建效果良好。距离约25 m的蓝色点云中,靠上部分为两颗行道树,靠下部分为两辆汽车,在图4(d)中分别“A”框和“B”框标出。第二层灌木丛距离约35 m,用浅蓝灰色点云显示,在图4(d)中用“C”框标出。最后的办公楼外墙距离约50 m,用橙色点云显示其3层结构。汽车和树木的总体轮廓清晰,而办公楼外墙在细节上效果一般。这是因为汽车和树木的表面反射率较高,而办公楼外侧有大量低漫反射率的玻璃窗,导致回波光子数量有差异。同时在双楔形棱镜扫描轨迹划分的像素点中,中心区域的像素点较为密集,而边际区域的像素点分布稀疏,进而造成了外墙部分成像模糊。

结论

本文搭建了一套基于SiSPAD的1030 nm单光子探测激光雷达,采用双棱镜作为扫描装置。从SiSPAD探测效率标定数据的分析和1064 nm / 1030 nm两个波长测距比较实验这两个方面验证,说明1030 nm单光子探测激光雷达能够获得67.8%左右的探测距离提升。另外,本文还演示了50 m范围的近距离三维成像,证明了1030 nm单光子探测激光雷达的可行性。同时,目前已经研发出高性能的1030 nm激光器货架产品,解决了激光光源的问题。相较于传统的近红外激光雷达,这种1030 nm单光子探测激光雷达在未来汽车自动驾驶、地形测绘等方面有很大的应用潜力。

论文链接:

DOI: 10.3969/j.issn.1001-5078.2023.11.008

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 324浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 159浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 210浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 134浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 80浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 333浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 178浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 666浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 42浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 195浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 206浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 238浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 145浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 123浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 619浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦