【瑞萨RAMCU创意氛围赛作品赏析】项目14——手势识别控制终端

瑞萨MCU小百科 2023-11-20 12:00


本项目主要以启明6M5开发板作为主控,通过AMG8833模块获取手部的温度,然后通过BP神经网络解析温度数据,来识别手部动作。当手部动作和预定控制指令激活动作相匹配时,向外部设备发送控制指令,当外部设备接收到对应指令执行对应的操作。


因为该设备是通过手部温度作为控制变量,所以项目运行的温度在28℃摄氏度下(设备静态是经过传感器测量得到的数据)。手部温度为33℃左右,手部距离传感器大概在5cm左右,并且处于传感器芯片正前方。说明:环境温度会影响传感器的识别。


硬件部分

①设备型号

野火RA6M5开发

②外围设备

GY- AMG8833 IR 8x8 红外热像

1.44寸彩色TFT显示屏高清IPS LCD液晶屏模块128*128

③其他配件

面包板 x 1杜邦线若干

④设备引脚配置

⑤引脚连接

以及串口:

TX : P512

RX: P511


软件部分

项目完成使用到的软件有

e2 studio

vs code

字模软件 PCtoLCD2013

野火串口调试助手


软件部分代码说明:

1、GY- AMG8833 IR 8x8 红外热像仪 驱动部分代码说明:

AMG8833模块使用I2C 通讯协议:(使用硬件I2C)

下面是模块是主要的各个功能驱动函数

根据数据手册说明:只要主机向从机发送0x80指令,从机设备 会直接 一次性按顺序发送完 温度栅格点 1-64 的温度数据

其他指令:按照I2C 通讯协议读取

I2C 驱动 .C 文件部分函数

// 设置传感器模式
void AMG88_SetSensorMode(AMG88_OperatingMode Mode)
{

   unsigned char buffer[2]={0x00,Mode};
   R_SCI_I2C_Write(&g_i2c6_ctrl, buffer, 2, false);
   return;
}

// 获取当前传感器模式

unsigned char AMG88_GetSensorMode(void)
{
   unsigned char OperatingModeBuffer=0;
   R_SCI_I2C_Write(&g_i2c6_ctrl, 0, 1, true);
   R_BSP_SoftwareDelay(2, 1000);
   //Read Register data
   R_SCI_I2C_Read(&g_i2c6_ctrl, &OperatingModeBuffer, 1, false);
   return OperatingModeBuffer;
}

// 重启传感器
void AMG88_SensorReset(AMG88_ResetMode Mode)
{
   //
   unsigned char ResetBuffer[2]={0x01,(unsigned char)Mode};
   //unsigned char ResetBuffer=0x30;
   R_SCI_I2C_Write(&g_i2c6_ctrl, ResetBuffer, 2, false);
   return;
}

// 设置帧率
void AMG88_SetFrameRate(AMG88_Frame Frame)
{

   unsigned char ResetBuffer[2]={0x02,(unsigned char)Frame};
   //unsigned char ResetBuffer=0x30;
   R_SCI_I2C_Write(&g_i2c6_ctrl, ResetBuffer, 2, false);
   return;
}
// 获取传感器帧率
unsigned char AMG88_GetFrameRate(void)
{
   unsigned char OperatingModeBuffer=0;
   unsigned char Address[1]={0x02};
   R_SCI_I2C_Write(&g_i2c6_ctrl, Address, 1, true);
   R_BSP_SoftwareDelay(2, 1000);
   //Read Register data
   R_SCI_I2C_Read(&g_i2c6_ctrl, &OperatingModeBuffer, 1, false);
   R_BSP_SoftwareDelay(2, 1000);
   return OperatingModeBuffer;
}
// 设置中断控制寄存器
void AMG88_SetICR(AMG88_ICR_REGISTER ICR)
{
   unsigned char ResetBuffer[2]={0x03,(unsigned char)ICR};
       //unsigned char ResetBuffer=0x30;
   R_SCI_I2C_Write(&g_i2c6_ctrl, ResetBuffer, 2, false);

return;
}
// 获取中断控制寄存器的数据
unsigned char AMG88_GetICR(void)
{
   unsigned char OperatingModeBuffer=0;
   unsigned char Address[1]={0x03};
   R_SCI_I2C_Write(&g_i2c6_ctrl, Address, 1, true);
//    R_SCI_I2C_Write(&g_i2c6_ctrl, 0x03, 1, true);
   R_BSP_SoftwareDelay(2, 1000);
   //Read Register data
   R_SCI_I2C_Read(&g_i2c6_ctrl, &OperatingModeBuffer, 1, false);
   return OperatingModeBuffer;
}
// 获取当前传感器状态
unsigned char AMG88_GetStatus(void)
{
   unsigned char OperatingModeBuffer=0;
   unsigned char Address[1]={0x04};
   R_SCI_I2C_Write(&g_i2c6_ctrl, Address, 1, true);
//    R_SCI_I2C_Write(&g_i2c6_ctrl, 0x04, 1, true);
   R_BSP_SoftwareDelay(2, 1000);
   //Read Register data
   R_SCI_I2C_Read(&g_i2c6_ctrl, &OperatingModeBuffer, 1, false);
   return OperatingModeBuffer;

}
// 清除传感器标志位
void AMG88_SetStatusClear(AMG_Status_FLAG ClearStatus)
{

   unsigned char ResetBuffer[2]={0x05,(unsigned char)ClearStatus};
           //unsigned char ResetBuffer=0x30;
   R_SCI_I2C_Write(&g_i2c6_ctrl, ResetBuffer, 2, false);
   return;
}

//
void AMG88_SetAverage(BOOL Flag)
{
   unsigned char ResetBuffer[2]={0x07,(Flag==TRUE)?(0xFF):(0)};
               //unsigned char ResetBuffer=0x30;
   R_SCI_I2C_Write(&g_i2c6_ctrl, ResetBuffer, 2, false);

}
//
unsigned char AMG88_GetAverage(void)
{
   unsigned char OperatingModeBuffer=0;
//    R_SCI_I2C_Write(&g_i2c6_ctrl, 0x07, 1, true);
   unsigned char Address[1]={0x07};
   R_SCI_I2C_Write(&g_i2c6_ctrl, Address, 1, true);

   R_BSP_SoftwareDelay(2, 1000);
   //Read Register data
   R_SCI_I2C_Read(&g_i2c6_ctrl, &OperatingModeBuffer, 1, false);
   return OperatingModeBuffer;
}

// 设置中断优先级
void AMG88_SetILR(unsigned char *ValueBuffer,unsigned char ArrayLenth)
{
   unsigned char ResetBuffer[7]={0x08,0x00,0x00,0x00,\
                                 0x00,0x00,0x00};
   if(ArrayLenth<=7 && ArrayLenth >= 1)
       return;
   for(unsigned char i= 1 ;i<7;i++)
   {

       if(i%2==0)
       {
           ResetBuffer[i]=(0x0F & ValueBuffer[i-1]);
       }else
       {
           ResetBuffer[i]=ValueBuffer[i-1];

       }
   }
   //unsigned char ResetBuffer=0x30;
   R_SCI_I2C_Write(&g_i2c6_ctrl, ResetBuffer, ArrayLenth+1, false);

return;
}
unsigned char Tempeture_Flag[2];
// 获取传感器 热敏电阻 电阻值
unsigned short AMG88_GetThermistor(void)
{

   unsigned short buffer_flag=0;
   unsigned char Address[1]={0x0E};
   R_SCI_I2C_Write(&g_i2c6_ctrl, Address, 1, true);
//    R_SCI_I2C_Write(&g_i2c6_ctrl, 0x0E, 1, true);
   R_BSP_SoftwareDelay(2, 1000);
   //Read Register data
   R_SCI_I2C_Read(&g_i2c6_ctrl, &Tempeture_Flag[0], 1, false);
   R_BSP_SoftwareDelay(2, 1000);
   Address[0]=0x0F;
   R_SCI_I2C_Write(&g_i2c6_ctrl, Address, 1, true);
   R_BSP_SoftwareDelay(2, 1000);
   R_SCI_I2C_Read(&g_i2c6_ctrl, &Tempeture_Flag[1], 1, false);
   R_BSP_SoftwareDelay(2, 1000);
   buffer_flag=Tempeture_Flag[1]<<8;
   buffer_flag|=Tempeture_Flag[0];
   return buffer_flag;
}
unsigned char Buffer[10];
unsigned char Revice[128];
// 获取传感器的温度
void AMG88_SensorData(void)
{
   /*
    * register address
    *
    * */
   Buffer[0]=0x80;
   //Send slave address
   R_SCI_I2C_Write(&g_i2c6_ctrl, Buffer, 1, true);
   R_BSP_SoftwareDelay(2, 1000);
   //Read Register data
   R_SCI_I2C_Read(&g_i2c6_ctrl, Revice, 128, false);
}

2、1.44寸彩色TFT显示屏高清IPS LCD液晶屏模块128*128  部分代码说明

该LCD 液晶屏使用SPI 通讯协议:(使用模拟SPI)

驱动芯片为ST7735SPI

驱动 .C 文件部分函数


void SPI_init(void)
{

   SET_LED();
   SET_CS();
   SET_CDX();
   SET_RST();
   SET_CLK();
   SET_SDA();

   return;
}

void SPI_SendData(unsigned char Data) // CDX = 1
{

   unsigned char i;

   for (i = 0; i < 8; i++)
   {
       CLEAR_CLK();

       if ((Data & 0x80) != 0)
           SET_SDA();
       else
           CLEAR_SDA();

       Data <<= 1;

       SET_CLK();

   }

   return;
}

void SPI_WriteCommand(unsigned char Data) //CDX = 0
{

   CLEAR_CS();
   CLEAR_CDX();

   SPI_SendData (Data);

   SET_CS();

   return;
}
void SPI_WriteData(unsigned char Data) //CDX = 1
{

   CLEAR_CS();
   SET_CDX();

   SPI_SendData (Data);

   SET_CS();

   return;

}

void WriteDispData(unsigned char DataH, unsigned char DataL)
{

   SPI_SendData (DataH);
   SPI_SendData (DataL);


}
void LCD_Init(void)
{

   SET_RST();
   R_BSP_SoftwareDelay (100, BSP_DELAY_UNITS_MILLISECONDS);

   CLEAR_RST();
   R_BSP_SoftwareDelay (100, BSP_DELAY_UNITS_MILLISECONDS);

   SET_RST();
   R_BSP_SoftwareDelay (200, BSP_DELAY_UNITS_MILLISECONDS);

   SPI_WriteCommand (0x11); //Exit Sleep
   R_BSP_SoftwareDelay (120, BSP_DELAY_UNITS_MILLISECONDS);

   SPI_WriteCommand (0xB1);
   SPI_WriteData (0x05); //0a
   SPI_WriteData (0x3c); //14
   SPI_WriteData (0x3c);

   SPI_WriteCommand (0xB2);
   SPI_WriteData (0x05);
   SPI_WriteData (0x3c);
   SPI_WriteData (0x3c);

   SPI_WriteData (0xB3);
   SPI_WriteData (0x05);
   SPI_WriteData (0x3c);
   SPI_WriteData (0x3c);

   SPI_WriteData (0x05);
   SPI_WriteData (0x3c);
   SPI_WriteData (0x3c);

   SPI_WriteCommand (0xB4); // 前面的b1-b5 是设置帧速率
   SPI_WriteData (0x03);

   SPI_WriteCommand (0xC0); // Set VRH1[4:0] & VC[2:0] for VCI1 & GVDD      Power Control
   SPI_WriteData (0x28);
   SPI_WriteData (0x08);
   SPI_WriteData (0x04);

   SPI_WriteCommand (0xC1); // Set BT[2:0] for AVDD & VCL & VGH & VGL
   SPI_WriteData (0xC0);

   SPI_WriteCommand (0xC2); // Set VMH[6:0] & VML[6:0] for VOMH & VCOML
   SPI_WriteData (0x0D);  //54h
   SPI_WriteData (0x00);   //33h

   SPI_WriteCommand (0xC3);
   SPI_WriteData (0x8D);
   SPI_WriteData (0x2A);

   SPI_WriteCommand (0xC4);
   SPI_WriteData (0x8D);
   SPI_WriteData (0xEE);

   SPI_WriteCommand (0xC5);
   SPI_WriteData (0x1A);

   SPI_WriteCommand (0x36);    //MX,MY,RGB MODE
   SPI_WriteData (0x08);

   SPI_WriteCommand (0xe0);
   SPI_WriteData (0x04);    //2c
   SPI_WriteData (0x22);
   SPI_WriteData (0x07);
   SPI_WriteData (0x0A);
   SPI_WriteData (0x2E);
   SPI_WriteData (0x30);
   SPI_WriteData (0x25);
   SPI_WriteData (0x2A);
   SPI_WriteData (0x28);
   SPI_WriteData (0x26);
   SPI_WriteData (0x2E);
   SPI_WriteData (0x3A);
   SPI_WriteData (0x00);
   SPI_WriteData (0x01);
   SPI_WriteData (0x03);
   SPI_WriteData (0x03);

   SPI_WriteCommand (0xe1);
   SPI_WriteData (0x04);
   SPI_WriteData (0x16);
   SPI_WriteData (0x06);
   SPI_WriteData (0x06);
   SPI_WriteData (0x0D);
   SPI_WriteData (0x2D);
   SPI_WriteData (0x26);
   SPI_WriteData (0x23);
   SPI_WriteData (0x27);
   SPI_WriteData (0x27);
   SPI_WriteData (0x25);
   SPI_WriteData (0x2D);
   SPI_WriteData (0x3B);
   SPI_WriteData (0x00);
   SPI_WriteData (0x01);
   SPI_WriteData (0x04);
   SPI_WriteData (0x13);

   SPI_WriteCommand (0x3A);
   SPI_WriteData (0x05);

   SPI_WriteCommand (0x29); // Display On
   R_BSP_SoftwareDelay (20, BSP_DELAY_UNITS_MILLISECONDS);

}
void BlockWrite(unsigned short Xstart, unsigned short Xend, unsigned short Ystart, unsigned short Yend)
{
   SPI_WriteCommand (0x2A);
   SPI_WriteData (Xstart >> 8);
   SPI_WriteData (Xstart + 2);
//    SPI_WriteData(Xstart);
   SPI_WriteData (Xend >> 8);
   SPI_WriteData (Xend + 2);
//    SPI_WriteData(Xstart);

   SPI_WriteCommand (0x2B);
   SPI_WriteData (Ystart >> 8);
   SPI_WriteData (Ystart + 1);
   SPI_WriteData (Yend >> 8);
   SPI_WriteData (Yend + 1);

   SPI_WriteCommand (0x2c);
}
void DispColor(unsigned short color)
{
   unsigned short i, j;

   BlockWrite (0, COL - 1, 0, ROW - 1);

   for (i = 0; i < ROW; i++)
   {
       for (j = 0; j < COL; j++)
       {
           SPI_WriteData (color >> 8);
           SPI_WriteData (color);
//            DelayMs(1);
       }
   }

}
void ClearFullScreen(void)
{

   unsigned short i, j;
   BlockWrite (0, COL - 1, 0, ROW - 1);
   for (j = 0; j < COL; j++)
   {
       SPI_WriteData (i + 50);
       SPI_WriteData (j + 50);

   }

   return;
}
void DrawColor(unsigned short ColorNumber)
{

   SPI_WriteData (0xFF);
   SPI_WriteData (0xFF);
   return;
}

3、BP 神经网络:

代码说明:

三层网络结构:

第一层是输入层,第二层是隐藏层,第三层是输出层

神经网络预测代码说明:

神经网络预测的原理是,将目标数据输入到神经网络中,经过神经网络中参数的迭代,使之得到符合要求的数据数据,然后保存神经网络中的参数(各个节点的权重参数)。使用该网络预测时,将训练好的参数,导入到神经网络中,该神经网络就预测和神经网络中相符合的数据。


该神经网络的相关信息如下:

三层BP神经网络:

输入层有64个元素  , 隐藏层有34个元素, 输出层有10个元素

训练次数为:10000次,最终的错误率为:0.00658,学习率为:0.1 ,动量因子:0.1 训练数据总共160组 (160组中 ,分成三份)总共训练了三个手势




手势1 36组数据 手势2 68组数据 手势3 54组数据 上图:为编写文档时所拍,非传感器测量时图片,仅说明在采集测试数据时的手势动作


训练数据示例:

[[0.0000,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.5,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000],[0,1,0,0,0,0,0,0,0,0]],
// 手势 1  要求输出 结果 -----> [0,1,0,0,0,0,0,0,0,0]

[[0.0000,0.0000,0.5,0.5,0.0000,0.5,0.5,0.5,0.0000,0.0000,0.5,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.5,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000],[0,0,1,0,0,0,0,0,0,0]],
// 手势 2  要求输出 结果 -----> [0,0,1,0,0,0,0,0,0,0]

[[0.0000,0.0000,0.0000,0.5,0.5,0.5,0.5,0.5,0.0000,0.0000,0.0000,0.5,0.5,0.5,0.0000,0.5,0.0000,0.0000,0.5,0.0000,0.0000,0.5,0.0000,0.5,0.0000,0.5,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.5,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000],[0,0,0,1,0,0,0,0,0,0]]
// 手势 3  要求输出 结果 -----> [0,0,0,1,0,0,0,0,0,0]

// 注:以上数据仅为 测试数据中的手势数据的 一部分 ,不代表整体数据

// 预测输出数据 示例:
[-0.0023248156377385144, 0.035785164105157696, 0.05889932014156386, 0.9992514065884543, 0.0003713636538696458, -0.002541229896438062, -0.0033772818188316607, -0.0023972941452978813, 0.001043452650557289, -0.0026320033807735485]

输出数据说明:

该网络有10个数据输出 ,(如:[0,0,0,1,0,0,0,0,0,0] (从左往右)依次是 0 - 9 手势 ,但本次训练 仅仅训练了3个手势, 结果如上。

其他信息说明:

本次的隐藏层的数目依次经历了 12->24->128->34 的变化 ,具体的数目和输入输出的元素个数,没有实际的关联(网上虽然有建议) ,具体看情况而论,因为是三层网络,隐藏层的数量不可以太少,也不可以太多,太少,说简单的,输出的数据不在[0,1]的区间,太多,输出的都是0.9左右的数据

输出的数据不在[0,1]的区间

  • ‍可以调整 学习率 或者 训练次数(增加),或者是动量因子(修改该参数时,学习率不变)

  • 调整隐藏层的节点数目(往大了调)‍

输出的都是0.9左右的数据(过拟合)

  • 调整隐藏层的节点数目(往小了调)(按实际情况调节)        

输出数据的设定,按照激活函数的取值选择

输入数据的选择,[0-1]之间 ,为了提供训练的成功率,在输入数据中做了一些处理

训练的前提是保证网络正常(代码没有写错)

优化训练的操作说明:

  1. 对数据进行了非0即0.5 的处理 ,对于超过 特定温度值的数据为0.5 ,不超过为 0(只要有相对应的特征即可)
  2. 网络训练成功的标志,输出的数据在(本网络)[0,1]之间,并且输出的数据 对应符合 输入的数据(只要有符合的即可尝试在在设备上运行),建议训练完成的网络,在预测时,要同时多预测几个,防止是误差
// 激活函数
double sigmoid(double x)
{
return tanh(x);
}
   
// 前向传播
void Forward()
{
unsigned char i=0,j=0;
double Temp=0.0;
double *InputValueTemp;
InputValueTemp=InputValue;
for( i=0 ;i< HIDDENSIZE ; i++)
{
Temp=0;
for(j=0 ; j < INPUTSIZE ; j++ )
{

Temp+=InputValue[j]*InputWeight[j*HIDDENSIZE+i];
}
HiddenValue[i]=sigmoid(Temp);
}

for( i=0 ;i < OUTPUTSIZE ; i++)
{
Temp=0;
for( j = 0; j < HIDDENSIZE ;j++ )
{
Temp+=HiddenValue[j]*OutputWeight[j*OUTPUTSIZE+i];
}
OutputValue[i]=sigmoid(Temp);

}

}


}

左上角

手势1 白色

手势2  浅绿色

手势3 浅紫色


视频演示


本项目还有需要优化的地方,也有着许多不足。作者水平有限,希望广大网友批评指正。


更多内容您可识别二维码或点击文末阅读原文访问查看:


更多内容,您可复制下方网址到浏览器中打开进入瑞萨中文论坛查看:

https://community-ja.renesas.com/zh/forums-groups/mcu-mpu/


1

END

1


推荐阅读

【瑞萨RA MCU创意氛围赛作品赏析】项目11——基于瑞萨RA6M5的信号处理工具集(上)

【瑞萨RA MCU创意氛围赛作品赏析】项目12——智能烟雾感应吸除系统

【瑞萨RA MCU创意氛围赛作品赏析】项目13——基于瑞萨启明6M5智能环境检测小车

更多精彩内容,请点击

评论
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 40浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 103浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 66浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 167浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 113浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 63浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦