微小电流检测-nA级

原创 云深之无迹 2023-11-11 17:14

这个文章因为写了时间很久了,思路我已经连不住了,所以发出来。


先说明,这文章是小电流!!!电流的检测,不要和电压混为一谈。

微小的电流测量,这个测量的限度在哪里呢?对于科学永无止境,但是对我来说,有尽头,目前是nA的级别,再往高噪音问题可能就有点难了。

首先给出这个数量级别,别迷失了自我

这里提前给出文章中频繁出现的名词:

静电计和纳伏表的特性不同,所以这两种仪器对运算放大器的要求也有所不同。静电计电压表使用的运算放大器,最重要的特性是低输入偏置电流和高输入阻抗。纳伏表输入前置放大器的最重要的要求,则是低输入噪声电压。

一切输入电流都代表误差。对电流测量来说,信号电流变成测量仪器的输入电流,然而在未向仪器的输入端加入信号电流时,总是存在某些背景电流,这种不希望的电流就是仪器的输入偏置电流常常也称为偏置电流。

我看了这么多文章和试验,归结出来一些步骤和难点。另外之前还有一篇:小电流测量杂谈,这篇文章呢,其实现在看,确实是不咋地,建议别看。前面的部分思路不对。

现在的微弱电流测量呢,就是俩派,积分派和反馈电阻派。

这是苏医所的一个文章里面的框图,这里面就是积分派

但是OP使用的是ADA4530,但是看这里实物是电阻派

但是这里我要多嘴一句了,这个模块怎么看着:

hhhh,不是他撒谎,就是我看错了

这个是一个市面上的一些反馈电阻

还有一些论文里面是没有,这个反馈电容是没有的

有三个作用,稳定性,带宽限制,降低宽频带噪音。

这个电容的算法在三个地方出现

我先给出一个,如果写在下面有,我加上来

专业点的资料看的是吉利时的测量手册,出名的1pA测量,ADI的ADA4530-1,我以前写过的Power Profiler Kit II NRF-PPK2 电流测量工具,剩下就是唐老师的视频了,其次还有JLC的一个项目。还有一些不知名的小文章,小论文,我一时之间也难也说明,但是都衷心感谢。

注意这里面的1pA的这个文章最平易近人,而且,里面也是最详细的论述,注意要看的是博客园的,这篇是最全面的,然后也是推荐了非常多的书,值得一看!!!

这里本来是有个链接的,但是好像我没有加。

因为这么小的电流肯定不会是纯模拟的工作,要有OP的介入,所以,这里就引出来了第一个点就是运放的选择。就两点,Ib小,Vos小就行。其实这样的运放很多的,不算很难挑。

比如下面这个ADI的,参数就还可以,pA级别的,那么可以测量nA以上的,一般就是100倍这样的样子。然后这个Vos呢,其实在多数的里面也不怎么去调零。

AD825

TI的确实是参数好看,所以大多数的时候,TI的也更好一些

下面有两个电路的拓扑,是讲不同德配置有什么影响,可以去看上面写的手册。

这种的叫分流

低阻值电阻器比高阻值电阻器准确度高,其时间和温度稳定性及电压系数等性能都更好。其次,低阻值电阻器降低了输入时间常数,使仪器的响应时间更短。为了尽量降低电路负载,安培计的输入电阻( RS)应当很小以便降低输入端压降( V2)。然而要注意减小分流电阻会降低信号噪声比。

这种的叫反馈

V1输出电压可以用来度量输入电流,总的灵敏度由反馈电阻器( RF)决定。

电路的低输入端压降以及相应的快速上升时间是由高增益运算放大器实现的。此运算放大器迫使 V1 接近于 0。

和电压表电路一样,可以使用如图 1-11 所示的组合电路来改变皮安表放大器

的增益。这里增加的 RA 和 RB 形成一个“ 乘法器” ,其输出电压为 V0=-IINRF( 1+RA/RB)

这里写的和上面的内容有点重复,但是请再看下。

最重要的是,ib,其次也会会说Vos,但是我个人觉得,Vos如果一直比较稳定,它某种程度就算是一个直流偏置电压。在输出端看就是会在原有的输出上面有一个抬起来的效果。

另外在乐老师的文章中出现了这样的字眼:热电动势其实主要是在微小电压放大时才需要考虑的,而这里是微小电流放大。

即便是10G的内阻,在带宽B=1Hz下热噪音电压的有效值本身就达到了13uV,100G的噪音就更大了,这足以掩盖任何常见的热电动势了,只要用常规做法即可,无需特别处理。

同样,其它噪音或干扰电压,如果都是微伏级别的,也无需特别考虑。由于高阻的采用容忍了更高的电压噪音,因此运放的Vos也变得不那么重要了,只要不大于1mV,温漂不大于10uV/℃即可,容易满足。

乐老师的文章点出了一些超微电流的刻板印象:

A、超高阻噪音太大,尽量避免使用这个是害人最深的误区。的确,根据热噪音理论式,噪音电压的平方与电阻阻值成正比,因此随着电阻的增大,噪音也会缓慢增大,规律是电阻增大100倍则噪音增大10倍。

但殊不知,电阻的噪音还有另一个从电流方式表达的侧面,电流的噪音的平方是与电阻成反比的:I = √(4*k*T*B/R)也就是说,电阻每增大100倍,电流噪音就降低为1/10。

有时真是奇怪得很,既然测试的是微电流,不计算电流噪音,反而只看电压噪音。既然你都算出了电压噪音,为什么不除一下电阻,得到电流噪音呢?纵观商品的静电计/微电流计,都是采用大电阻的方式,一般都用到100G,更有吉时利的642和6430,用到了1T,这样才能取得0.08fA的噪音有效值和0.4fA峰峰值(有效值和峰峰值一般是5倍的关系)。

B、超高高阻质量不好、超高阻买不到相对来说,高阻不容易做好是事实,但对比超高阻带来的收益看,其质量的下降没那么大。10M的电阻还算不上高阻,这个阻值RN55D做的最好,我用100只串联做过1G;100M的,我有一些1/4W的,也不错;而到了1G尤其是10G,小体积的就很难做好了,因为需要一定长度的导电途径,因此选那种电阻粗、刻线细的就有优势;到了100G就更难选一些,好在我找到了一款不错的国产货。甚至到1T,都能找到可以用的电阻。那种说高阻不好的,有可能是他用的测试表不好,或者是测试时没有很好的屏蔽,外界干扰了测试结果,其实不一定是电阻本身不好。事实上,用氧化钌做主材的高阻可以做得相当好,例如10G的可以做到0.05%、温漂5ppm/C,100G的可以做到25ppm/C的温漂,1T的可以做到0.2%。如果真有这种高阻为关键元件的需求,的确可以买到。

C、I-V法最好用T型网络法这是一个广泛存在的误区,很多文献都推崇T型网络,用来回避高阻。

这个是康威电子的一个模块,就是79的东西,放出来的东西

这个是作为一个补充出现

事实上,电阻的噪音的计算并非看等效电阻,而是看实际阻值。

用T型网络后电阻是降下来了,但带来的问题就是电流噪音相应的增大,这对于超微电流测试得不偿失。采纳T型网络方式的I-V变换,最主要的原因是对电流噪音公式的忽略或不理解。另外,推举T型电路者还强调可以降低Ib的影响,也是错误的。正规的微电流计没有一个采用T型网络的,T型网络只存在与不明真相的文献中。当然,T型电路也不是毫无是处,在对高阻有限制、电流不是很微弱、对响应时间有要求的地方可以采用。

!!!这个点老师可以说是真的是老师傅的看法了,CSDN有个文章,是淘宝康威电子的文章,里面电路有一段是T型法。

D、微电流测试,难度大、需要考虑的因素多,因此需要复杂的技术事实上,微电流测试就是那么一层窗户纸,用简单的I-V方法一捅就破。fA级别的信号,无论如何变换和放大,最终总要转换成电压,何必不一步到位?那么小的电流下,采用任何其它的电路或器件,都将引入新的漏电、额外的不确定因素,为什么不用简单的?

E、用运放做I-V转换,性能上超不过Ib这里的性能,一般是指噪音或灵敏度。Ib当然选小的好,但Ib不是极限,完全可以做出比Ib的实际值更好的微电流测试器。极限是Ib的噪音。说的太好了!!!

商品静电运放,Ib最好的指标,也就是<10fA,有几款已经不生产了,例如ICH8500A、3430K。

目前在产的最好的是LMP7721,指标是Ib<20fA。

在这里

显然,20fA或者10fA对于超微电流还是太大了。如果我们想用这样的运放取得1fA的性能,还是是完全可能的。

Ib大,甚至缓慢的变化(例如温漂)都不要紧,可以调零。调零电路在微电流表里很常见,例如610C有三个调零钮(粗、中、细),而数字表是靠数字法调零的,更简单而不易察觉。

相反,Ib的噪音是无法克服的例如:

LMC6062的噪音是0.20fA、

LMC6001是0.13fA,

OPA128L是0.12fA,

LMP7721是0.10fA。

以上噪音的单位是√Hz,也可以认为是带宽B=1Hz下的噪音值。当然,这些都是噪音的典型值,通过筛选,可以取得更小的电流噪音,因此理论上在B=1Hz下取得0.1fA的噪音是完全有可能的,这已经远小于运放的Ib了。

看见了很多奇奇怪怪的运放

然后就是在放大的过程中,一级放大很多倍有点不现实,一般都是设计成多级放大,然后唐老师的课中意思是设计一个差分电路来获取这个值,不过是前面两个端口为G=1的缓冲。

在我没有完全用数学理论证明好以前,我的所有话都是要自我批判的:

他的这个前提是使用4线法测量电阻,后面再说。其实是测量小电阻的做法,不过现在是测量了电阻两端的电压。

笔记记录的比较乱,大概就是这样

剩下的内容其实就是PCB的布局和器件的选择和使用上了,因为这么小的电流,任何一个支路的电流都能影响到最终的结果。

剩下的问题其实是更严重的事情,测试,和标准的校准用的源,我的意思是,你至少要有一个可以输出1nA的电流源来测试我的机器是正确的。

和上面的电阻搭配起来看

市面上卖的高阻电阻

电阻分压可能是最简单的技术

nA级别的信号,必须用大电阻来取样。为了尽量不影响电流源,得做成跨阻。否则电压噪声都跟着一起放大了

我挺感谢这么一篇文章的,虽然它没有那么多的理论计算

这个是ADI推荐的一些电路

完整的测量

一般来说,都是两级放大的,前级的运放就负责IV转换

同样也给出一个光电二极管的测量电路

泄漏电流是另一种由不希望的电阻通路(称为泄漏电阻)两端的电压产生的不希望的误差电流,这项电流和偏置电流合在一起就是总的误差电流。

这里的内容是所有的书里面都要说的内容,就是这个漏电流的保护,但是我一直没有找到合适的解释,但是下面这个解释我觉得还可以,后面也给出了为什么要输入源的电阻尽可能小的解释。


 图程守洙《普通物理学》第二册93页 

在普通物理中,我们又学习过:静电平衡状态下,空腔导体外面的带电体不会影响空腔内部队电场分布;一个接地的空腔导体,空腔内的带电体对腔外的物体不会产生影响。 这种使导体空腔内的电场不受外界的影响或利用接地的空腔导体将腔内带电体对外界的影响隔绝的现像,称为静电屏蔽。

图02

对前一句“静电平衡状态下,空腔导体外面的带电体不会影响空腔内部队电场分布”,可以用图(02)来举例表示。

图(02)空间中原没有空腔导体,但有一个匀强电场(电力线彼此平行)。然后我们在此空间中放入内部并没有电荷的一个空腔导体,放入后电场变形,如图(02)。 

在图(02)中,我们看到:空腔导体外面的电场不再是个匀强场,电场变了形。电场变形,是因为外部电场使得空腔导体上电荷重新分布,直到这些电荷不再受到电场力为止,如图中红色和蓝色符号所示。空腔导体上这些电荷的移动,产生了一个新的电场(图中未画出)。

这个新产生的电场和原有的匀强电场叠加,一方面使得原有的匀强电场变形,另一方面使得空腔导体内部电场为零。空腔导体内部电场为零,很容易从空腔导体上电荷受力为零得到证明。当外部电场不是恒定电场而是交变电场时,空腔导体内部电场为零这个结论不复成立,因为空腔导体壳上电荷的重新分布需要时间,不可能立即达到平衡。但只要频率不是太高,空腔导体上电荷的重新分布所需要的时间就可以忽略,空腔导体内部电场为零这个结论依然近似成立。实际上,如果导体壳不是薄到纳米数量级,频率即使高到数十GHz,空腔导体内部电场仍然是非常小的。图(02)中下划蓝色线的那一句“一个接地的空腔导体,空腔内的带电体对腔外的物体不会产生影响”,同样是仅在静电场情况下才成立。如果空腔内的带电体在运动,

图(03)

图3-带电体在作高速回转运动,则带电体的运动对空腔外有影响,同样是因为空腔导体上的电荷重新分布需要时间。但和下划红线部分一样,只要频率不是太高,内部带电体对空腔导体外没有影响这个结论依然近似成立。但需要注意:此结论仅在空腔导体接地时才成立,若空腔导体未接地,那么空腔导体内部带电体仍然会对外部产生影响,即使是在静电情况下。

上面这些内容就够了,来看这个:

图上那样的形式,就可以看得很清楚。干扰信号经电容器C和电阻R分压,R上分得S信号电压的一部分。

C越大,R越大,R上分到的电压就越大,反之则越小。对同样的C和R,频率越高,R上分得的电压越大。这正是高频电场干扰往往较强的原因。

从以上叙述看,受干扰设备输入端阻抗越低,也就是R越小,越不容易受到电场干扰。是不是这样呢?确实是这样的。电子设备输入阻抗越低,越不容易受到电场干扰。但是,低阻抗设备可能更容易受到磁场干扰。

另外就是对这个输入端的保护也很重要,就是这个三轴电缆好贵,我没买,但是在原理上面可以小小的探索一下。

三轴电缆的另一个应用是用于进行精确低电流测量的探头,其中通过芯线和屏蔽层之间的绝缘体的泄漏电流通常会改变测量结果。核心(称为力)和内屏蔽(称为防护)通过电压缓冲器/跟随器保持大致相同的电势,因此它们之间的漏电流在所有实际用途中都为零,尽管存在缺陷绝缘。相反,漏电流发生在内屏蔽和外屏蔽之间,这并不重要,因为该电流将由缓冲电路而不是被测器件提供,并且不会影响测量。该技术可以几乎完美地消除漏电流,但在非常高的频率下效果较差,因为缓冲器无法准确跟踪测量的电压。

三同轴在低噪声测量中的作用是通过保持内部导体与其周围的保护层处于相同电位来消除导体的电阻效应。

另外,我做的模块也在几周后上市,欢迎各位咨询。

http://bbs.eeworld.com.cn/thread-1115749-1-1.html
https://www.doc88.com/p-73647394092592.html

评论 (0)
  •   电磁干扰抑制系统平台深度解析   一、系统概述   北京华盛恒辉电磁干扰抑制系统在电子技术快速发展、电磁环境愈发复杂的背景下,电磁干扰(EMI)严重影响电子设备性能、稳定性与安全性。电磁干扰抑制系统平台作为综合性解决方案,通过整合多元技术手段,实现对电磁干扰的高效抑制,确保电子设备稳定运行。   应用案例   目前,已有多个电磁干扰抑制系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁干扰抑制系统。这些成功案例为电磁干扰抑制系统的推广和应用提供了有力支持。   二
    华盛恒辉l58ll334744 2025-04-22 15:27 156浏览
  • 文/Leon编辑/cc孙聪颖‍在特朗普政府发起的关税战中,全球芯片产业受到巨大冲击,美国芯片企业首当其冲。据报道称,英伟达本周二公布的8-K文件显示,美国政府通知该公司向中国(包括中国香港及澳门)销售尖端芯片(H20)时,需要获得美国政府的许可。文件发布后,英伟达预计会在第一季度中额外增加55亿美元的相关费用计提。随后,英伟达股价单日下跌6.9%,市值一夜蒸发约1890亿美元(约合人民币1.37万亿元)。至截稿时,至截稿时,其股价未见止跌,较前日下跌4.51%。北京时间4月17日,英伟达创始人、
    华尔街科技眼 2025-04-22 20:14 106浏览
  •   电磁频谱数据综合管理平台系统解析   一、系统定义与目标   北京华盛恒辉电磁频谱数据综合管理平台融合无线传感器、软件定义电台等前沿技术,是实现无线电频谱资源全流程管理的复杂系统。其核心目标包括:优化频谱资源配置,满足多元通信需求;运用动态管理与频谱共享技术,提升资源利用效率;强化频谱安全监管,杜绝非法占用与干扰;为电子战提供频谱监测分析支持,辅助作战决策。   应用案例   目前,已有多个电磁频谱数据综合管理平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁频谱数
    华盛恒辉l58ll334744 2025-04-23 16:27 145浏览
  •   陆地边防事件紧急处置系统平台解析   北京华盛恒辉陆地边防事件紧急处置系统平台是整合监测、预警、指挥等功能的智能化综合系统,致力于增强边防安全管控能力,快速响应各类突发事件。以下从系统架构、核心功能、技术支撑、应用场景及发展趋势展开全面解读。   应用案例   目前,已有多个陆地边防事件紧急处置系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润陆地边防事件紧急处置系统。这些成功案例为陆地边防事件紧急处置系统的推广和应用提供了有力支持。   一、系统架构   感知层:部
    华盛恒辉l58ll334744 2025-04-23 11:22 110浏览
  •   复杂电磁环境模拟系统平台解析   一、系统概述   北京华盛恒辉复杂电磁环境模拟系统平台是用于还原真实战场或特定场景电磁环境的综合性技术平台。该平台借助软硬件协同运作,能够产生多源、多频段、多体制的电磁信号,并融合空间、时间、频谱等参数,构建高逼真度的电磁环境,为电子对抗、通信、雷达等系统的研发、测试、训练及评估工作提供重要支持。   应用案例   目前,已有多个复杂电磁环境模拟系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润复杂电磁环境模拟系统。这些成功案例为复杂电
    华盛恒辉l58ll334744 2025-04-23 10:29 150浏览
  •   后勤实验仿真系统平台深度解析   北京华盛恒辉后勤实验仿真系统平台依托计算机仿真技术,是对后勤保障全流程进行模拟、分析与优化的综合性工具。通过搭建虚拟场景,模拟资源调配、物资运输等环节,为后勤决策提供数据支撑,广泛应用于军事、应急管理等领域。   应用案例   目前,已有多个后勤实验仿真系统平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润后勤实验仿真系统平台。这些成功案例为后勤实验仿真系统平台的推广和应用提供了有力支持。   一、核心功能   (一)后勤资源模拟
    华盛恒辉l58ll334744 2025-04-23 15:39 117浏览
  • 一、技术背景与市场机遇在智能家居高速发展的今天,用户对家电设备的安全性、智能化及能效表现提出更高要求。传统取暖器因缺乏智能感知功能,存在能源浪费、安全隐患等痛点。WTL580-C01微波雷达感应模块的诞生,为取暖设备智能化升级提供了创新解决方案。该模块凭借微波雷达技术优势,在精准测距、环境适应、能耗控制等方面实现突破,成为智能取暖器领域的核心技术组件。二、核心技术原理本模块采用多普勒效应微波雷达技术,通过24GHz高频微波信号的发射-接收机制,实现毫米级动作识别和精准测距。当人体进入4-5米有效
    广州唯创电子 2025-04-23 08:41 123浏览
  • 文/Leon编辑/cc孙聪颖‍4月18日7时,2025北京亦庄半程马拉松暨人形机器人半程马拉松正式开跑。与普通的半马比赛不同,这次比赛除了有人类选手,还有21支人形机器人队伍参赛,带来了全球首次人类与机器人共同竞技的盛况。参赛队伍中,不乏明星机器人企业及机型,比如北京人形机器人创新中心的天工Ultra、松延动力的N2等。宇树G1、众擎PM01,则是由城市之间科技有限公司购置及调试,并非厂商直接参赛。考虑到机器人的适用场景和续航力各有不同,其赛制也与人类选手做出区别:每支赛队最多可安排3名参赛选手
    华尔街科技眼 2025-04-22 20:10 109浏览
  • 一、行业背景与市场需求高血压作为全球发病率最高的慢性病之一,其早期监测与管理已成为公共卫生领域的重要课题。世界卫生组织数据显示,全球超13亿人受高血压困扰,且患者群体呈现年轻化趋势。传统血压计因功能单一、数据孤立等缺陷,难以满足现代健康管理的需求。在此背景下,集语音播报、蓝牙传输、电量检测于一体的智能血压计应运而生,通过技术创新实现“测量-分析-管理”全流程智能化,成为慢性病管理的核心终端设备。二、技术架构与核心功能智能血压计以电子血压测量技术为基础,融合物联网、AI算法及语音交互技术,构建起多
    广州唯创电子 2025-04-23 09:06 140浏览
  •   无人机结构仿真与部件拆解分析系统平台解析   北京华盛恒辉无人机结构仿真与部件拆解分析系统无人机技术快速发展的当下,结构仿真与部件拆解分析系统平台成为无人机研发测试的核心工具,在优化设计、提升性能、降低成本等方面发挥关键作用。以下从功能、架构、应用、优势及趋势展开解析。   应用案例   目前,已有多个无人机结构仿真与部件拆解分析系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机结构仿真与部件拆解分析系统。这些成功案例为无人机结构仿真与部件拆解分析系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-23 15:00 154浏览
  • 前言本文主要演示基于TL3576-MiniEVM评估板HDMI OUT、DP 1.4和MIPI的多屏同显、异显方案,适用开发环境如下。Windows开发环境:Windows 7 64bit、Windows 10 64bitLinux开发环境:VMware16.2.5、Ubuntu22.04.5 64bitU-Boot:U-Boot-2017.09Kernel:Linux-6.1.115LinuxSDK:LinuxSDK-[版本号](基于rk3576_linux6.1_release_v
    Tronlong 2025-04-23 13:59 97浏览
  • 故障现象一辆2016款奔驰C200L车,搭载274 920发动机,累计行驶里程约为13万km。该车组合仪表上的防侧滑故障灯、转向助力故障灯、安全气囊故障灯等偶尔异常点亮,且此时将挡位置于R挡,中控显示屏提示“后视摄像头不可用”,无法显示倒车影像。 故障诊断用故障检测仪检测,发现多个控制单元中均存储有通信类故障代码(图1),其中故障代码“U015587 与仪表盘的通信存在故障。信息缺失”出现的频次较高。 图1 存储的故障代码1而组合仪表中存储有故障代码“U006488 与用户界
    虹科Pico汽车示波器 2025-04-23 11:22 78浏览
  •   卫星通信效能评估系统平台全面解析   北京华盛恒辉卫星通信效能评估系统平台是衡量卫星通信系统性能、优化资源配置、保障通信服务质量的关键技术工具。随着卫星通信技术的快速发展,特别是低轨卫星星座、高通量卫星和软件定义卫星的广泛应用,效能评估系统平台的重要性日益凸显。以下从技术架构、评估指标、关键技术、应用场景及发展趋势五个维度进行全面解析。   应用案例   目前,已有多个卫星通信效能评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星通信效能评估系统。这些成功案例为卫
    华盛恒辉l58ll334744 2025-04-22 16:34 148浏览
  • 在科技飞速发展的当下,机器人领域的每一次突破都能成为大众瞩目的焦点。这不,全球首届人形机器人半程马拉松比赛刚落下帷幕,赛场上的 “小插曲” 就掀起了一阵网络热潮。4月19日,北京亦庄的赛道上热闹非凡,全球首届人形机器人半程马拉松在这里激情开跑。20支机器人队伍带着各自的“参赛选手”,踏上了这21.0975公里的挑战之路。这场比赛可不简单,它将机器人放置于真实且复杂的动态路况与环境中,对机器人在运动控制、环境感知和能源管理等方面的核心技术能力进行了全方位的检验。不仅要应对长距离带来的续航挑战,还要
    用户1742991715177 2025-04-22 20:42 96浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦