非全对称五面镜单视点折反射红外周视系统

MEMS 2023-11-11 00:01

红外周视系统能够提供周围360°场景红外图像,消除车辆驾驶视觉盲区,能借助算法实现定位、建图、避障、路径规划、导航等功能,满足智能驾驶和自主驾驶的迫切需求。按照技术路线,可将红外周视系统分为三类:1)分时多视点红外周视系统;2)分孔径多视点红外周视系统;3)单视点折反射红外周视系统。

据麦姆斯咨询报道,近期,北京理工大学光电学院和云南北方光学科技有限公司的科研团队在《红外与激光工程》期刊上发表了以“非全对称五面镜单视点折反射红外周视系统”为主题的文章。该文章第一作者为周云扬,通讯作者为王岭雪副教授,主要从事红外成像、图像处理、红外光谱等方面的研究工作。

文中面向车载周视红外成像应用,综合分孔径多视点周视和单视点折反射周视的优势,根据车载应用中对前方探测距离要求高、对后方探测距离要求较低的实际情况,提出一种分孔径、单视点非全对称五面镜折反射红外周视系统设计方案,前方、左右侧视场均为64°,后方则是两个84°视场,共同组成水平360°、俯仰±29°的周视视场。针对不同焦距的非制冷红外成像组件,完成非全对称五面镜的结构设计,建立了满足单视点约束的非全对称折反射周视结构理论模型;设计出可调整、对准视点的系统机械结构,分析了系统投影转换、图像处理要素,提高其全面性、真实性和可信度。

全对称多面镜单视点折反射周视系统概述

目前国外研究者已开发出工作在可见光波段的四面镜、五面镜、十面镜单视点约束折反射周视系统,如图1所示,其共同特点为:多面镜构成对称结构的、底角(α)为45°的正多面体;每个镜面对应的摄像机镜头焦距(f)相同(即视场角ω相等);每个摄像机视点与底面之间的垂直距离(h)、到中心轴线的水平距离(l)相同,摄像机视点是透镜中心(镜头为薄透镜时)或透镜物方主点(镜头为透镜组时)。对称多面镜单视点约束折反射结构的本质是利用正多面体反射镜将多个焦距相同摄像机视点所成的虚像重合于同一点。

图1 全对称多面镜单视点约束折反射周视样机及其结构示意图

以全对称五面镜为例,如图2(a)所示,P1、P2、P3、P4、P5是采用针孔成像模型简化后的摄像机视点,视点方向垂直向下。视点所对应的每一个棱面都是一块镜面朝外的平面反射镜,与水平面成45°夹角。所有视点位于棱锥顶点所在的水平面与相应棱面角平分线所在垂直平面的交线上,不同方向上的视点经平面反射镜成像后得到的虚视点重合为同一点,P′点成为系统的唯一视点。假设观察者位于P′点,就能从该点通过不同成像方向的多个摄像机观察到周围无缝的周视图像。图2(b)是图2(a)中相邻两块平面镜的正面投影图,P1和P2两个视点关于镜面轴对称的虚像点位于顶点O′与底面的垂直线OO′上,并在点P′重合,通过构建平面镜与摄像机之间的约束关系即可实现单视点约束。

图2 全对称五面镜单视点约束。(a)全对称五面镜;(b)相邻平面镜的正面投影图

图3是美国Tonbo Imaging公司分别使用九套低照度CMOS组件和非制冷红外成像组件研制的双波段分孔径多视点周视系统WolfPack。与图3中的分孔径、多视点周视系统相比,引入反射面构建的分孔径、单视点周视系统具有的优势有:

图3 分孔径多视点周视系统

1)能有效消除不同摄像机之间的视差;

2)能不经过图像拼接,直接获得水平360°视场的周视图像;

3)能保证水平360°视场内的物像一一对应,同一物体成像唯一,不存在“跨镜追踪”问题,提高周视图像中目标的可信度,既有利于对感兴趣目标进行识别和追踪,又有利于定量测量目标的方向和运动状态。

非全对称五面镜单视点折反射红外周视系统设计

系统总体设计

驾驶员多数时候通过观察道路前方和左、右侧来保证安全驾驶,故要求周视系统中的前视和左、右侧摄像机具有较远的作用距离,以便能尽早感知路面信息,从而快速进行避障操作,对后视摄像机的作用距离要求相对较低。因此,文中提出一种非全对称五面镜单视点折反射红外周视系统方案。首先,根据车辆驾驶时对行人探测距离选择合适的红外镜头。假设行人尺寸0.5×1.7m²、温度309 K,背景温度298 K,红外探测器像元规模640×512、像元尺寸12 μm、噪声等效温差(NETD)40 mK,使用最小可分辨温差(MRTD)公式计算,得到探测概率50%时,行人和背景的等效黑体温差ΔT′与距离R的曲线ΔT′(R)与MRTD(R)如图4(a)所示,此时4.1、5.8、9.1 mm焦距红外镜头的探测距离分别为145、200、320 m,相应的水平视场角分别为86°、67°、46°,如图4(b)所示。

图4 计算结果。(a)50%探测概率时焦距4.1、5.8、9.1 mm红外镜头的探测距离;(b)焦距4.1、5.8、9.1 mm红外镜头对应的水平视场角

根据计算结果(图4),为使用五块非全对称的反射镜获得360°周视视场,前视、左右侧均为64°视场(焦距5.8 mm),后视为两个84°视场(焦距4.1 mm),视场构成如图5所示。传统车载视觉存在盲区检测区域,主要为挡风玻璃两侧倾斜A柱遮挡造成的A柱盲区(见图5中Blind Spot Ⅰ)以及后视镜盲区(见图5中Blind spot Ⅱ),所设计的系统能够有效消除这些盲区。系统选用的红外探测器组件参数见表1。

图5 系统视场构成示意图

表1 系统所用红外成像组件的性能参数

非全对称五面镜结构设计

基于2.1节选用的红外成像组件,根据单视点约束要求进行非全对称五面镜结构设计。三套焦距f₁=5.8 mm的等效视点为P1、P2、P3,对应棱面均与水平面成α的夹角−镜面倾角;两套焦距f₂=4.1 mm的等效视点为P4和P5,对应棱面与水平面成β的镜面倾角。不同焦距镜头组合使得五面镜结构底部表现为顶点到中心距离相等、边长与内角不完全相等的非全对称五边形,且红外成像组件在垂直方向上处于不同高度,如图6所示。单视点约束非全对称五面镜结构设计要点是调整不同镜面倾角组合(α、β)与红外成像组件的空间位置,使得视点P1、P2、P3、P4、P5所成的虚像重合于P′点。

图6 非全对称五面镜的几何结构示意图

为方便计算单视点约束下非全对称五面镜结构参数,选取图6中一个方向的红外成像组件进行分析。为不失一般性,令该成像组件的等效视点为P,对应的镜面倾角为θ,其他结构参数定义如图7所示,并在表2中列出,包括:虚视点P′高度m、底面中心点到边长距离d、可裁剪镜面高度s(图7(b)中红色虚线上方高度)、成像组件等效视点P的高度h以及与结构顶点O′的水平距离l、成像组件的垂直视场角2ε、镜头直径k。

图7 非全对称五面镜结构的参数定义示意图。(a)三维图;(b)侧面投影二维图

表2 非全对称五面镜的结构参数

五面镜结构的整体尺寸由镜面倾角θ、底部中心点到边长的距离d、虚视点高度m决定。假设垂直视场角2ε左侧边界光线刚好位于结构底部C处,视点P对应的反射镜棱面为图7(a)中的平面ABO′,该反射面侧面投影为图7(b)中的CO′。

根据几何光学中光线的反射分析红外成像组件刚好不对自身成像时的视场临界角,如图8所示,将等效视点P对应的红外成像组件镜头直径k令为线段MN,临界入射光线Ⅰ(图8中Ray Ⅰ)刚好经过镜头边界点M,在Q点以入射角ϕ1发生反射,反射光线经过镜头边界点N后进入红外成像组件;临界入射光线Ⅱ(图8中Ray Ⅱ)在C点以入射角ϕ2发生反射,反射光线经过镜头边界点M后进入红外成像组件。在此条件下,令角度∠MPN=2ε′。

图8 无遮挡成像分析

综上所述,根据单视点约束设计非全对称五面镜结构的主要步骤如图9所示,包括:

1)针对特定任务中目标与背景之间的温度差,根据空间分辨力和作用距离要求选取合适的红外成像组件及其镜头参数,如表1所示;

2)根据垂直视场角2ε、镜头直径k等选取合适的视点高度m与镜面倾角θ的组合,通过求解红外成像组件等效视点P的高度h以及与结构顶点O′的水平距离l,确定红外成像组件的精确位置,再根据反射视场确定结构底部中心点到边长的距离d、可裁剪镜面高度s,从而确定非全对称五棱台反射镜的具体尺寸;

3)根据上一步获得的系统结构参数进行视场有无遮挡的分析;

4)根据视场无遮挡分析结果优化系统结构,直至获得无遮挡、结构尺寸小、易加工的非对称五棱台反射镜。

图9 非全对称五面镜结构的设计流程图

五方向平面−柱面投影获得周视图像的模型

满足单视点约束的非全对称五面镜和不同焦距红外镜头将五个方向的场景辐射反射并汇聚到五套垂直放置的红外焦平面探测器,如图10所示,由于虚视点P′所在轴线可当作旋转轴,采用柱面投影将图10(a)五个方向上的平面图像转换为无缝周视图像,如图10(b)所示。图10中红色线、蓝色线分别代表焦距f₁ =5.8 mm、f₂=4.1 mm的红外成像组件。另外,为尽可能保留前方和左、右侧视场信息,将焦距f₁ =5.8 mm作为柱面投影半径进行周视图像投影。同时,三幅焦距f₁ =5.8 mm和两幅f₂=4.1 mm的图像也可以作为大视场图像进行保存和供使用者调用。

图10 平面投影到周视图像的转换示意图。(a)五个方向上的平面图像;(b)柱面投影后的周视图像

系统机械结构设计

利用ProE软件对该系统进行仿真设计,提出可调整、对准视点的机械结构方案,保证不同焦距红外成像组件视点能精确重合为同一点,如图11所示。该周视系统主要可分为镜面反射区域、红外成像组件、中心柱轴以及相关支架。红外成像组件通过固定在圆盘平台上与中心柱轴保持一定的水平和垂直距离,镜面反射区域主要由反射镜支架与反射镜面组成,水平与垂直方向上增加平面支架保证倾角的稳定性和准确性,支架表面刻制凹槽保证两者的贴合。反射镜面由具有一定厚度、内部均匀、拥有光滑平整前表面的浮法玻璃组成,有利于红外辐射的镜面反射。每个红外成像组件采集对应反射镜面反射的红外辐射,共同构成360°红外周视图像。

图11 系统机械结构设计图

为使多个视点对准于单个虚视点以保证单视点约束,设计了红外成像组件空间位置可调整的机械结构。一方面,在中心柱轴上放置不同数量的调节圈调整高度,并通过锁紧圈固定;另一方面,红外成像组件采用固定座组件确定在圆盘上的位置,该组件可在一定范围内移动,用于调节红外成像组件的水平距离,下方放置不同数量的调节圈调整垂直高度。中心柱轴调整机制和固定座调整机制确保可手动调节红外成像组件的空间位置,避免结构加工、人工装调误差造成的视点位置偏移。该系统经过机械设计后的最终结构参数如表3所示。

表3 系统结构参数的理论设计值与实际值

原型系统实物与周视图像处理

加工、组装和调试后的原型系统实物照片如图12所示。当系统工作时,五个红外成像组件根据外同步信号同时采集视频图像,一帧图像的大小为640 pixel×480 pixel。

图12 文中原型系统的实物照片

由于使用两种焦距的红外镜头(f₁=5.8 mm和f₂=4.1 mm),首先需要对其中一种焦距的图像进行缩放。

综上所述,该系统红外周视图像的获取需要进行的图像处理步骤主要包括:柱面投影、缩放、中心对齐、冗余部分切割、灰度平衡,最终获得完整且无缝的红外周视图像,如图13所示,前方和左、右侧红外成像组件作用距离较远,扩大驾驶员视野,满足全天时、无盲区的观察需要。

图13 系统成像结果

结论

文中针对车辆驾驶应用中前方和左、右侧、后方对行人探测距离要求的不同(分别为200 m和145 m),提出并实现了前方和左、右侧均为64°视场、后视为两个84°视场的非全对称五面镜单视点折反射红外周视系统,利用非全对称五面镜将三套焦距f₁=5.8 mm和两套f₂=4.1 mm的红外成像组件的虚视点重合为同一点,建立了单视点约束非全对称五面镜结构的设计流程,即根据空间分辨力和作用距离要求选取合适的红外成像组件及其镜头参数后,再根据单视点结构约束条件确定非全对称五棱台反射镜的具体尺寸,并根据系统结构参数进行视场遮挡分析后进一步优化系统结构,直至获得无遮挡、结构尺寸小、易加工的非对称五棱台反射镜。完成加工、装调非全对称五面镜折反射红外周视原型系统后,提出了包含柱面投影、缩放、中心对齐、冗余部分切割、灰度平衡等步骤的周视红外图像处理流程,最终实现对水平360°、俯仰±29°视场的无遮挡、无缝、无盲区红外成像。该系统获取场景的红外图像全面、真实和可信,有助于消除车辆驾驶观察盲区,提升智能驾驶能力,在民用和军用领域都有广阔的应用前景。未来将开展系统小型化方面的工作。

这项研究获得国家自然科学基金项目(U2241226)的资助和支持。

论文链接:

https://doi.org/10.3788/IRLA20230266

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 故障现象 一辆2007款法拉利599 GTB车,搭载6.0 L V12自然吸气发动机(图1),累计行驶里程约为6万km。该车因发动机故障灯异常点亮进厂检修。 图1 发动机的布置 故障诊断接车后试车,发动机怠速轻微抖动,发动机故障灯长亮。用故障检测仪检测,发现发动机控制单元(NCM)中存储有故障代码“P0300 多缸失火”“P0309 气缸9失火”“P0307 气缸7失火”,初步判断发动机存在失火故障。考虑到该车使用年数较长,决定先使用虹科Pico汽车示波器进行相对压缩测试,以
    虹科Pico汽车示波器 2025-01-15 17:30 85浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 130浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 154浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 133浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 115浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 171浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 64浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 82浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 120浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 128浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 71浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 69浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 59浏览
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 84浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 128浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦