更多文章
华为蔡建永:智能网联汽车的数字安全和功能安全挑战与思考
汽车数据合规要点
车载以太网技术发展与测试方法
车载以太网防火墙设计
SOA:整车架构下一代的升级方向
软件如何「吞噬」汽车?
汽车信息安全 TARA 分析方法实例简介
汽车FOTA信息安全规范及方法研究
联合国WP.29车辆网络安全法规正式发布
滴滴下架,我却看到数据安全的曙光
从特斯拉被约谈到车辆远程升级(OTA)技术的合规
如何通过CAN破解汽
会员权益: (点击可进入)谈思实验室VIP会员
点击上方蓝字谈思实验室
获取更多汽车网络安全资讯
从硬件的角度看,以太网接口电路主要由MAC(Media Access Control)控制器和物理层接口PHY(Physical Layer,PHY)两大部分构成。如下图所示:
DMA控制器通常属于CPU的一部分,用虚线放在这里是为了表示DMA控制器可能会参与到网口数据传输中。但是,在实际的设计中,以上三部分并不一定独立分开的。由于,PHY整合了大量模拟硬件,而MAC是典型的全数字器件。考虑到芯片面积及模拟/数字混合架构的原因,通常,将MAC集成进微控制器而将PHY留在片外。更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合。可分为下列几种类型:
MAC及PHY工作在OSI七层模型的数据链路层和物理层。具体如下:
MAC(Media Access Control)即媒体访问控制子层协议。
该部分有两个概念:MAC可以是一个硬件控制器 及 MAC通信以协议。该协议位于OSI七层协议中数据链路层的下半部分,主要负责控制与连接物理层的物理介质。MAC硬件大约就是下面的样子了:
在发送数据的时候,MAC协议可以事先判断是否可以发送数据,如果可以发送将给数据加上一些控制信息,最终将数据以及控制信息以规定的格式发送到物理层。
在接收数据的时候,MAC协议首先判断输入的信息并是否发生传输错误,如果没有错误,则去掉控制信息发送至LLC(逻辑链路控制)层。该层协议是以太网MAC由IEEE-802. 3以太网标准定义。
以太网数据链路层其实包含MAC(介质访问控制)子层和LLC(逻辑链路控制)子层。一块以太网卡MAC芯片的作用不但要实现MAC子层和LLC子层的功能,还要提供符合规范的PCI界面以实现和主机的数据交换。
MAC从PCI总线收到IP数据包(或者其他网络层协议的数据包)后,将之拆分并重新打包成最大1518Byte、最小64Byte的帧。
这个帧里面包括了目标MAC地址、自己的源MAC地址和数据包里面的协议类型(比如IP数据包的类型用80表示,最后还有一个DWORD(4Byte)的CRC码。
可是目标的MAC地址是哪里来的呢?
这牵扯到一个ARP协议(介乎于网络层和数据链路层的一个协议)。第一次传送某个目的IP地址的数据的时候,先会发出一个ARP包,其MAC的目标地址是广播地址,里面说到:“谁是xxx.xxx.xxx.xxx这个IP地址的主人?”因为是广播包,所有这个局域网的主机都收到了这个ARP请求。收到请求的主机将这个IP地址和自己的相比较,如果不相同就不予理会,如果相同就发出ARP响应包。这个IP地址的主机收到这个ARP请求包后回复的ARP响应里说到:“我是这个IP地址的主人”。这个包里面就包括了他的MAC地址。以后的给这个IP地址的帧的目标MAC地址就被确定了。(其它的协议如IPX/SPX也有相应的协议完成这些操作)。
IP地址和MAC地址之间的关联关系保存在主机系统里面,叫做ARP表。由驱动程序和操作系统完成。
以太网MAC芯片的一端接计算机PCI总线,另外一端就接到PHY芯片上,它们之间是通过MII接口链接的。一个MAC的结构图如下图所示:
PHY((Physical Layer,PHY))是IEEE802.3中定义的一个标准模块,STA(station management entity,管理实体,一般为MAC或CPU)通过SMI(Serial Manage Interface)对PHY的行为、状态进行管理和控制,而具体管理和控制动作是通过读写PHY内部的寄存器实现的。一个PHY的基本结构如下图:
PHY是物理接口收发器,它实现OSI模型的物理层。
IEEE-802.3标准定义了以太网PHY。包括MII/GMII(介质独立接口)子层、PCS(物理编码子层)、PMA(物理介质附加)子层、PMD(物理介质相关)子层、MDI子层。它符合IEEE-802.3k中用于10BaseT(第14条)和100BaseTX(第24条和第25条)的规范。
注:PHY寄存器在IEEE802.3标准的 22.2.4 Management functions 节有介绍,但不涉及所有的寄存器,个别寄存器需要到其它章节中看,当然,文档里面也提到该在哪里找到哪个寄存器。
MII(Media Independent Interface)即媒体独立接口,MII 接口是 MAC 与 PHY 连接的标准接口。它是 IEEE-802.3 定义的以太网行业标准。MII 接口提供了 MAC 与 PHY 之间、PHY 与 STA(Station Management)之间的互联技术,该接口支持 10Mb/s 与 100Mb/s 的数据传输速率,数据传输的位宽为 4 位。MII 接口如下图所示:
MII接口主要包括四个部分。一是从MAC层到PHY层的发送数据接口,二是从PHY层到MAC层的接收数据接口,三是从PHY层到MAC层的状态指示信号,四是MAC层和PHY层之间传送控制和状态信息的MDIO接口。
MII 包括一个数据接口,以及一个 MAC 和 PHY 之间的管理接口:
PHY 里面的部分寄存器是 IEEE 定义的,这样PHY把自己的目前的状态反映到寄存器里面。
MAC 通过 SMI 总线不断的读取PHY 的状态寄存器以得知目前 PHY 的状态。例如连接速度、双工的能力等。
当然也可以通过 SMI 设置 PHY的寄存器达到控制的目的。例如流控的打开关闭、自协商模式还是强制模式等。
不论是物理连接的MII总线和 SMI 总线,还是 PHY 的状态寄存器和控制寄存器都是由IEEE的规范的。因此不同公司的 MAC 和 PHY 一样可以协调工作。当然为了配合不同公司的 PHY 的自己特有的一些功能,驱动需要做相应的修改。
MII 支持 10Mbps 和 100Mbps 的操作,一个接口由 14 根线组成,它的支持还是比较灵活的。但是有一个缺点是因为它一个端口用的信号线太多,如果一个 8 端口的交换机要用到 112 根线,16 端口就要用到 224 根线,到 32 端口的话就要用到 448 根线。一般按照这个接口做交换机是不太现实的。所以现代的交换机的制作都会用到其它的一些从 MII 简化出来的标准,比如 RMII、SMII、GMII等。
简化媒体独立接口是标准的以太网接口之一,比 MII 有更少的 I/O 传输。RMII 口是用两根线来传输数据的,MII 口是用 4 根线来传输数据的,GMII 是用 8 根线来传输数据的。MII/RMII 只是一种接口,对于10Mbps 线速,MII 的时钟速率是 2.5MHz 就可以了,RMII 则需要 5MHz;对于 100Mbps 线速,MII 需要的时钟速率是 25MHz,RMII 则是 50MHz。
MII/RMII 用于传输以太网包,在 MII/RMII 接口是 4/2bit 的,在以太网的PHY里需要做串并转换,编解码等才能在双绞线和光纤上进行传输,其帧格式遵循IEEE 802.3(10M)/IEEE 802.3u(100M)/IEEE 802.1q(VLAN)。
以太网帧的格式为:前导符 + 开始位 + 目的 mac 地址 + 源 mac 地址 + 类型/长度 + 数据 + padding(optional) + 32bitCRC。如果有 vlan,则要在类型/长度后面加上 2 个字节的 vlan tag,其中 12bit 来表示vlan id,另外,4bit 表示数据的优先级!
GMII是千兆网的MII接口,这个也有相应的RGMII接口,表示简化了的GMII接口。GMII 采用 8 位接口数据,工作时钟125MHz,因此传输速率可达 1000Mbps。同时兼容 MII 所规定的10/100 Mbps工作方式。GMII 接口数据结构符合IEEE以太网标准,该接口定义见 IEEE 802.3-2000。
RGMII(Reduced Gigabit Media Independant Interface),精简GMII接口。相对于GMII相比,RGMII具有如下特征:
信号定义如下:
虽然RGMII信号线减半,但TXC/RXC时钟仍为125Mhz,为了达到1000Mbit的传输速率,TXD/RXD信号线在时钟上升沿发送接收GMII接口中的TXD[3:0]/RXD[3:0],在时钟下降沿发送接收TXD[7:4]/RXD[7:4],并且信号TX_CTL反应了TX_EN和TX_ER状态,即在TXC上升沿发送TX_EN,下降沿发送TX_ER,同样的道理试用于RX_CTL,下图为发送接收的时序:
SMI:串行管理接口(Serial Management Interface),通常直接被称为MDIO接口(Management Data Input/Output Interface)。MDIO最早在IEEE 802.3的第22卷定义,后来在第45卷又定义了增强版本的MDIO,其主要被应用于以太网的MAC和PHY层之间,用于MAC层器件通过读写寄存器来实现对PHY层器件的操作与管理。
MDIO主机(即产生MDC时钟的设备)通常被称为STA(Station Management Entity),而MDIO从机通常被称为MMD(MDIO Management Device)。通常STA都是MAC层器件的一部分,而MMD则是PHY层器件的一部分。
MDIO接口包括两条线,MDIO和MDC,其中MDIO是双向数据线,而MDC是由STA驱动的时钟线。MDC时钟的最高速率一般为2.5MHz,MDC也可以是非固定频率,甚至可以是非周期的。MDIO接口只是会在MDC时钟的上升沿进行采样,而并不在意MDC时钟的频率(类似于I2C接口)。如下图所示。
网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口.物理层的芯片称之为PHY.
数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能.以太网卡中数据链路层的芯片称之为MAC控制器.
很多网卡的这两个部分是做到一起的.他们之间的关系是pci总线接mac总线,mac接phy,phy接网线(当然也不是直接接上的,还有一个变压装置).
通过IEEE定义的标准的MII/GigaMII(Media Independed Interfade,介质独立界面)界面连接MAC和PHY。这个界面是IEEE定义的。MII界面传递了网络的所有数据和数据的控制。
而MAC对PHY的工作状态的确定和对PHY的控制则是使用SMI(Serial Management Interface)界面通过读写PHY的寄存器来完成的。PHY里面的部分寄存器也是IEEE定义的,这样PHY把自己的目前的状态反映到寄存器里面,MAC通过SMI总线不断的读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度,双工的能力等。当然也可以通过SMI设置PHY的寄存器达到控制的目的,例如流控的打开关闭,自协商模式还是强制模式等。
我们看到了,不论是物理连接的MII界面和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作。当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改。
来源:汽车嵌入式
更多文章
软件如何「吞噬」汽车?
汽车信息安全 TARA 分析方法实例简介
汽车FOTA信息安全规范及方法研究
联合国WP.29车辆网络安全法规正式发布
滴滴下架,我却看到数据安全的曙光
从特斯拉被约谈到车辆远程升级(OTA)技术的合规
如何通过CAN破解汽
会员权益: (点击可进入)谈思实验室VIP会员