一篇搞定Cmake使用教程

一起学嵌入式 2023-11-10 09:06

扫描关注一起学嵌入式,一起学习,一起成长


大家好,之前分享了一些 makefile 相关的文章:

Make 命令教程 | 手把手带你入门 Makefile
Linux内核Makefile执行流程

一些通用的Makefile文件模板

今天分享一篇关于 cmake 的相关文章,通过这个工具可以生成本地的Makefile。让我们不用去编写复杂的Makefile。

引言

CMake是开源、跨平台的构建工具,可以让我们通过编写简单的配置文件去生成本地的Makefile,这个配置文件是独立于运行平台和编译器的,这样就不用亲自去编写Makefile了,而且配置文件可以直接拿到其它平台上使用,无需修改,非常方便。

本文主要讲述在Linux下如何使用CMake来编译我们的程序。

一 环境搭建

我使用的是ubuntu18.04,安装cmake使用如下命令:

sudo apt install cmake

安装完成后,在终端下输入:

cmake -version

查看cmake版本

这样cmake就安装好了。

二 简单入门

首先让我们从最简单的代码入手,先来体验下cmake是如何操作的。

2.1 项目结构

2.2 示例源码

打开终端,输入:

touch main.c CMakeLists.txt

编写main.c,如下:

#include

int main(void)
{
printf("Hello World\n");
return 0;
}

然后在main.c同级目录下编写CMakeLists.txt,内容如下:

cmake_minimum_required (VERSION 2.8)

project (demo)

add_executable(main main.c)

2.3 运行查看

在终端下切到main.c所在的目录下,然后输入以下命令运行cmake:

cmake .

输出结果如下:

ps:此时,建议留意一下这个文件夹下多生成的文件都有哪些。


可以看到成功生成了Makefile,还有一些cmake运行时自动生成的文件。

然后在终端下输入make:


可以看到执行cmake生成的Makefile可以显示进度,并带颜色。再看下目录下的文件:


可以看到我们需要的可执行文件main也成功生成了!

然后运行main:


运行成功!

PS:如果想重新生成main,输入make clean就可以删除main这个文件。然后重新make就行。需要注意的是:我希望你着重看一下这时候这个文件夹下都有哪些文件。

三 编译多个源文件

3.1 在同一个目录下有多个源文件

3.1.1 简单版本

接下来进入稍微复杂的例子:在同一个目录下有多个源文件。

3.1.1.1 项目结构


3.1.1.2 示例代码

首先删除之前的文件:

rm -rf CMakeFiles CMakeCache.txt cmake_install.cmake Makefile main

在之前的目录下添加2个文件,testFunc.c和testFunc.h:

touch testFunc.c testFunc.h

添加完后整体文件结构如下:


testFunc.c

/*
** testFunc.c
*/

#include
#include "testFunc.h"

void func(int data)
{
printf("data is %d\n", data);
}

testFunc.h

/*
** testFunc.h
*/

#ifndef _TEST_FUNC_H_
#define _TEST_FUNC_H_

void func(int data);

#endif

修改main.c,调用testFunc.h里声明的函数func():

main.c

#include

#include "testFunc.h"

int main(void)
{
func(100);
return 0;
}

修改CMakeLists.txt,在add_executable的参数里把testFunc.c加进来:

CMakeLists.txt

cmake_minimum_required (VERSION 2.8)

project (demo)

add_executable(main main.c testFunc.c)

3.1.1.3 运行查看

cmake .
make


然后运行查看:


运行成功!

可以类推,如果在同一目录下有多个源文件,那么只要在add_executable里把所有源文件都添加进去就可以了。

但是如果有一百个源文件,再这样做就有点坑了,无法体现cmake的优越性。因此cmake提供了一个命令可以把指定目录下所有的源文件存储在一个变量中,这个命令就是

aux_source_directory(dir var)

第一个参数dir是指定目录,第二个参数var是用于存放源文件列表的变量。

接下来写个进阶版的demo使用一下这个变量。

3.1.2 进阶版本

3.1.2.1 项目结构


3.1.2.2 示例源码

删除无关文件

rm -rf CMakeFiles CMakeCache.txt cmake_install.cmake main Makefile

创建文件:

touch testFunc1.c testFunc1.h

testFunc1.c

/*
** testFunc1.c
*/

#include
#include "testFunc1.h"

void func1(int data)
{
printf("data is %d\n", data);
}

testFunc1.h

/*
** testFunc1.h
*/

#ifndef _TEST_FUNC1_H_
#define _TEST_FUNC1_H_

void func1(int data);

#endif

再修改main.c,调用testFunc1.h里声明的函数func1():

main.c

#include

#include "testFunc.h"
#include "testFunc1.h"

int main(void)
{
func(100);
func1(200);

return 0;
}

修改CMakeLists.txt:

CMakeLists.txt

cmake_minimum_required (VERSION 2.8)

project (demo)

aux_source_directory(. SRC_LIST)

add_executable(main ${SRC_LIST})

使用aux_source_directory把当前目录下的源文件存列表存放到变量SRC_LIST里;

然后在add_executable里调用SRC_LIST(注意调用变量时的写法)。

3.1.2.3 运行查看

再次执行cmake和make,并运行main:


可以看到运行成功了。

aux_source_directory()也存在弊端,它会把指定目录下的所有源文件都加进来,可能会加入一些我们不需要的文件,此时我们可以使用set命令去新建变量来存放需要的源文件,如下:

cmake_minimum_required (VERSION 2.8)

project (demo)

set( SRC_LIST
./main.c
./testFunc1.c
./testFunc.c)

add_executable(main ${SRC_LIST})

3.2 在不同目录下有多个源文件

一般来说,当程序文件比较多时,我们会进行分类管理,把代码根据功能放在不同的目录下,这样方便查找。那么这种情况下如何编写CMakeLists.txt呢?

3.2.1 项目结构

我们把之前的源文件整理一下(新建2个目录test_func和test_func1):

rm -rf CMakeFiles CMakeCache.txt cmake_install.cmake main Makefile

整理好后整体文件结构如下:


把之前的testFunc.c和testFunc.h放到test_func目录下,testFunc1.c和testFunc1.h则放到test_func1目录下。

3.2.2 示例源码

其中,CMakeLists.txt和main.c在同一目录下,内容修改成如下所示:

cmake_minimum_required (VERSION 2.8)

project (demo)

include_directories (test_func test_func1)

aux_source_directory (test_func SRC_LIST)
aux_source_directory (test_func1 SRC_LIST1)

add_executable (main main.c ${SRC_LIST} ${SRC_LIST1})

这里出现了一个新的命令:include_directories。

该命令是用来向工程添加多个指定头文件的搜索路径,路径之间用空格分隔。

因为main.c里include了testFunc.h和testFunc1.h,如果没有这个命令来指定头文件所在位置,就会无法编译。当然,也可以在main.c里使用include来指定路径,如下

#include "test_func/testFunc.h"
#include "test_func1/testFunc1.h"

只是这种写法不好看。另外,我们使用了2次aux_source_directory,因为源文件分布在2个目录下,所以添加2次。

3.2.2 运行查看


四 项目级的组织结构

正规一点来说,一般会把源文件放到src目录下,把头文件放入到include文件下,生成的对象文件放入到build目录下,最终输出的可执行程序文件会放到bin目录下,这样整个结构更加清晰。

4.1 项目结构

让我们把前面的文件再次重新组织下:

4.2 示例源码

修改CMakeLists.txt:

CMakeLists.txt

cmake_minimum_required (VERSION 2.8)

project (demo)

add_subdirectory (src)

add_subdirectory:这个语句的作用是增加编译子目录。其基本语法格式是:

add_subdirectory(source_dir [binary_dir] [EXCLUDE_FROM_ALL])

一共有三个参数,后两个是可选参数.

  • source_dir 源代码目录

指定一个包含CMakeLists.txt和代码文件所在的目录,该目录可以是绝对路径,也可以是相对路径,对于后者相对路径的起点是CMAKE_CURRENT_SOURCE_DIR。此外,如果子目录再次包含的CMakeLists.txt,则将继续处理里层的CMakeLists.txt,而不是继续处理当前源代码。

  • binary_dir 二进制代码目录

这个目录是可选的,如果指定,cmake命令执行后的输出文件将会存放在此处,若没有指定,默认情况等于source_dir没有进行相对路径计算前的路径,也就是CMAKE_BINARY_DIR

  • EXCLUDE_FROM_ALL标记

这个标志是可选的,如果传递了该参数表示新增加的子目录将会排除在ALL目录之外(可能是make系统中的make all?),表示这个目录将从IDE的工程中排除。用户必须显式在子文件这个编译目标(手动cmake之类的)。指定了这个文件夹,表示这个文件夹是独立于源工程的,这些函数是有用但是不是必要的,比如说我们一系列的例子。

add_subdirectory 这个命令用于添加源文件子目录,同时还可以指定中间二进制和目标二进制的生成路径。EXCLUDE_FROM_ALL将会将这个目录从编译中排除,如工程的例子需要等待其他编译完成后再进行单独的编译。通常子目录应该包含自己的project()命令,这样以来整个编译命令将会产生各自的目标文件。如果把CMakeLists.txt与VS IDE比较,总的CMakeLists.txt就相当于解决方案,子CMakeLists.txt就相当于在解决方案下的工程文件。还有一个需要注意的是,如果编译父CMakeLists时依赖了子CMakeLists.txt中的源文件,那么该标志将会被覆盖(也就是也会处理),以满足编译任务。

这里指定src目录下存放了源文件,当执行cmake时,就会进入src目录下去找src目录下的CMakeLists.txt,所以在src目录下也建立一个CMakeLists.txt,内容如下:

src/CMakeLists.txt

aux_source_directory (. SRC_LIST)

include_directories (../include)

add_executable (main ${SRC_LIST})

set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)

这里的set其实是和前面的一样,只是EXECUTABLE_OUTPUT_PATH是个系统自带的预定义变量,其意义如下:

  • EXECUTABLE_OUTPUT_PATH :目标二进制可执行文件的存放位置

  • PROJECT_SOURCE_DIR:工程的根目录

所以,这里set的意思是把存放elf文件的位置设置为工程根目录下的bin目录。(cmake有很多预定义变量,详细的可以网上搜索一下)

添加好以上这2个CMakeLists.txt后,整体文件结构如下:

4.3 运行查看

下面来运行cmake,不过这次先让我们切到build目录下:

cd build
cmake ..
make


这样Makefile会在build目录下生成,二进制程序会在bin目录下生成,然后运行可执行程序:

cd ../bin
./main


这里解释一下为什么在build目录下运行cmake?还记得在第一个例子里我让你着重看一下cmake和make之后会生成什么文件吗?这个过程中会生成很多文件,但是可惜的是跟我们的运行并没有什么关系,因此,如果能把编译隔离在某个文件夹,这样cmake的时候所有的中间文件都将在这个目录下生成,删除的时候也很好删除,非常方便。如果不这样做,cmake运行时生成的附带文件就会跟源码文件混在一起,这样会对程序的目录结构造成污染。另外一种写法:前面的工程使用了2个CMakeLists.txt,最外层的CMakeLists.txt用于掌控全局,使用add_subdirectory来控制其它目录下的CMakeLists.txt的运行。

上面的例子也可以只使用一个CMakeLists.txt,把最外层的CMakeLists.txt内容改成如下

CMakeLists.txt

cmake_minimum_required (VERSION 2.8)

project (demo)

set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)

aux_source_directory (src SRC_LIST)

include_directories (include)

add_executable (main ${SRC_LIST})

同时,还要把src目录下的CMakeLists.txt删除。

然后正常编译运行就可以。

五 动态库和静态库的编译控制

有时只需要编译出动态库和静态库,然后等着让其它程序去使用。让我们看下这种情况该如何使用cmake。

5.1 生成库文件

5.1.1 项目结构

首先按照如下重新组织文件,只留下testFunc.h和TestFunc.c


我们会在build目录下运行cmake,并把生成的库文件存放到lib目录下。

5.1.2 示例源码

CMakeLists.txt

cmake_minimum_required (VERSION 3.5)

project (demo)

set (SRC_LIST ${PROJECT_SOURCE_DIR}/testFunc/testFunc.c)

add_library (testFunc_shared SHARED ${SRC_LIST})
add_library (testFunc_static STATIC ${SRC_LIST})

set_target_properties (testFunc_shared PROPERTIES OUTPUT_NAME "testFunc")
set_target_properties (testFunc_static PROPERTIES OUTPUT_NAME "testFunc")

set (LIBRARY_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/lib)

这里又出现了新的命令和预定义变量:

  • add_library: 生成动态库或静态库(第1个参数指定库的名字;第2个参数决定是动态还是静态,如果没有就默认静态;第3个参数指定生成库的源文件)

  • set_target_properties: 设置最终生成的库的名称,还有其它功能,如设置库的版本号等

  • LIBRARY_OUTPUT_PATH: 库文件的默认输出路径,这里设置为工程目录下的lib目录

PS:前面使用set_target_properties重新定义了库的输出名称,如果不使用set_target_properties也可以,那么库的名称就是add_library里定义的名称,只是连续2次使用add_library指定库名称时(第一个参数),这个名称不能相同,而set_target_properties可以把名称设置为相同,只是最终生成的库文件后缀不同(一个是.so,一个是.a),这样相对来说会好看点。

5.1.3 运行查看

cd build/
cmake ..
make
cd ../lib/
ls


5.2 链接库文件

既然我们已经生成了库,那么就进行链接测试下。

5.2.1 项目结构

重新建一个工程目录,然后把上节生成的库拷贝过来,然后在在工程目录下新建src目录和bin目录,在src目录下添加一个main.c,整体结构如下:


5.2.2 示例源码

main.c

#include

#include "testFunc.h"

int main(void)
{
func(100);

return 0;
}

CMakeLists.txt

cmake_minimum_required (VERSION 3.5)

project (demo)


set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)

set (SRC_LIST ${PROJECT_SOURCE_DIR}/src/main.c)

# find testFunc.h
include_directories (${PROJECT_SOURCE_DIR}/testFunc/inc)

find_library(TESTFUNC_LIB testFunc HINTS ${PROJECT_SOURCE_DIR}/testFunc/lib)

add_executable (main ${SRC_LIST})

target_link_libraries (main ${TESTFUNC_LIB})

这里出现2个新的命令,

  • find_library: 在指定目录下查找指定库,并把库的绝对路径存放到变量里,其第一个参数是变量名称,第二个参数是库名称,第三个参数是HINTS,第4个参数是路径,其它用法可以参考cmake文档

  • target_link_libraries: 把目标文件与库文件进行链接

使用find_library的好处是在执行cmake …时就会去查找库是否存在,这样可以提前发现错误,不用等到链接时。

5.2.3 运行查看

cd到build目录下,然后运行cmake … && make,最后进入到bin目录下查看,发现main已经生成,运行之:

cd build/
cmake ..
make
cd ../bin/
./main


ps:在lib目录下有testFunc的静态库和动态库,find_library(TESTFUNC_LIB testFunc …默认是查找动态库,如果想直接指定使用动态库还是静态库,可以写成find_library(TESTFUNC_LIBlibtestFunc.so …或者find_library(TESTFUNC_LIB libtestFunc.a …

ps:查看elf文件使用了哪些库,可以使用readelf -d ./xx来查看 例:readelf -d ./main

六 条件编译

有时编译程序时想添加一些编译选项,如-Wall,-std=c++11等,就可以使用add_compile_options来进行操作。这里以一个简单程序来做演示。

6.1 简单程序

6.1.1 项目结构


6.1.2 示例代码

main.cpp

#include

int main(void)
{
auto data = 100;
std::cout << "data: " << data << "\n";
return 0;
}

CMakeLists.txt

cmake_minimum_required (VERSION 2.8)

project (demo)

set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)

add_compile_options(-std=c++11 -Wall)

add_executable(main main.cpp)

6.1.3 运行查看

然后cd到build目录下,执行cmake … && make命令,就可以在bin目录下得到main的可执行文件


6.2 添加编译选项

有时希望在编译代码时只编译一些指定的源码,可以使用cmake的option命令,主要遇到的情况分为2种:

  1. 本来要生成多个bin或库文件,现在只想生成部分指定的bin或库文件

  2. 对于同一个bin文件,只想编译其中部分代码(使用宏来控制)

6.2.1 生成部分指定bin或库文件

6.2.1.1 项目结构

假设我们现在的工程会生成2个bin文件,main1和main2,项目结构如下:


6.2.1.2 示例源码

CMakeLists.txt

cmake_minimum_required(VERSION 3.5)

project(demo)

option(MYDEBUG "enable debug compilation" OFF)

set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)

add_subdirectory(src)

这里使用了option命令,其第一个参数是这个option的名字,第二个参数是字符串,用来描述这个option是来干嘛的,第三个是option的值,ON或OFF,也可以不写,不写就是默认OFF。

然后编写src目录下的CMakeLists.txt,如下:

src/CMakeLists.txt

cmake_minimum_required (VERSION 3.5)

add_executable(main1 main1.c)

if (MYDEBUG)
add_executable(main2 main2.c)
else()
message(STATUS "Currently is not in debug mode")
endif()

注意,这里使用了if-else来根据option来决定是否编译main2.c,其中main1.c和main2.c的内容如下:

main1.c

// main1.c
#include

int main(void)
{
printf("hello, this main1\n");

return 0;
}

main1.c

// main2.c
#include

int main(void)
{
printf("hello, this main2\n");

return 0;
}

6.2.1.3 运行查看

然后cd到build目录下输入cmake … && make就可以只编译出main1,如果想编译出main2,就把MYDEBUG设置为ON,再次输入cmake … && make重新编译。

每次想改变MYDEBUG时都需要去修改CMakeLists.txt,有点麻烦,其实可以通过cmake的命令行去操作,例如我们想把MYDEBUG设置为OFF,先cd到build目录,然后输入cmake … -DMYDEBUG=ON,这样就可以编译出main1和main2 (在bin目录下)

6.2.2 编译部分代码

假设我们有个main.c,其内容如下:

main.c

#include

int main(void)
{
#ifdef WWW1
printf("hello world1\n");
#endif

#ifdef WWW2
printf("hello world2\n");
#endif

return 0;
}

可以通过定义宏来控制打印的信息,我们CMakeLists.txt内容如下:

cmake_minimum_required(VERSION 3.5)

project(demo)

set (EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/bin)

option(WWW1 "print one message" OFF)
option(WWW2 "print another message" OFF)

if (WWW1)
add_definitions(-DWWW1)
endif()

if (WWW2)
add_definitions(-DWWW2)
endif()

add_executable(main main.c)

这里把option的名字保持和main.c里的宏名称一致,这样更加直观,也可以选择不同的名字。通过与add_definitions()的配合,就可以控制单个bin文件的打印输出了。

整体工程结构如下:


cd到build目录下执行cmake … && make,然后到bin目录下执行./main,可以看到打印为空,

接着分别按照下面指令去执行,然后查看打印效果,

  • cmake … -DWWW1=ON -DWWW2=OFF && make

  • cmake … -DWWW1=OFF -DWWW2=ON && make

  • cmake … -DWWW1=ON -DWWW2=ON && make

这里有个小坑要注意下:假设有2个options叫A和B,先调用cmake设置了A,下次再调用cmake去设置B,如果没有删除上次执行cmake时产生的缓存文件,那么这次虽然没设置A,也会默认使用A上次的option值。

所以如果option有变化,要么删除上次执行cmake时产生的缓存文件,要么把所有的option都显式的指定其值。

总结

以上是自己学习CMake的一点学习记录,通过简单的例子让大家入门CMake,学习的同时也阅读了很多网友的博客。CMake的知识点还有很多,具体详情可以在网上搜索。

总之,CMake可以让我们不用去编写复杂的Makefile,并且跨平台,是个非常强大并值得一学的工具。

文章来源于网络,版权归原作者所有,如有侵权,请联系删除。



扫码,拉你进高质量嵌入式交流群


关注我【一起学嵌入式】,一起学习,一起成长。


觉得文章不错,点击“分享”、“”、“在看” 呗!

一起学嵌入式 公众号【一起学嵌入式】,RTOS、Linux编程、C/C++,以及经验分享、行业资讯、物联网等技术知
评论 (0)
  •   电磁干扰测试系统:电子设备电磁兼容性保障利器   北京华盛恒辉电磁干扰测试系统作为评估电子设备在电磁环境中电磁兼容性(EMC)的关键工具,主要用于检测与分析设备在电磁干扰环境下的性能表现,确保其符合相关标准,能够在实际应用中稳定运行。   应用案例   目前,已有多个电磁干扰测试系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁干扰测试系统。这些成功案例为电磁干扰测试系统的推广和应用提供了有力支持。   系统组成   电磁干扰测试系统一般由以下核心部分构成:  
    华盛恒辉l58ll334744 2025-04-14 10:40 39浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 94浏览
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 81浏览
  • 华为Freebuds pro 耳机拆解 2020年双十一花了1000大洋买了华为的Freebuds pro,这个耳机的降噪效果真是杠杠的。完全听不到外边的噪音。几年后当我再次使用这款耳机的时候。发现左耳没带多久就自动断连了。后来查了小红书说耳机的电池没电了导致,需要重新配一只,华为售后不支持维修支持更换。而且配件的价格要好几百。真是欲哭无泪,还没用多久呢。后来百度了都说这个不是很好拆(没有好工具的前提下)。 虽然网上已经有很多拆解的视频和介绍了,今天我还是要拆解看看里面是怎么样的构造(暴力)。拿
    zhusx123 2025-04-12 23:20 47浏览
  • 在制造业或任何高度依赖产品质量的行业里,QA(质量保证)经理和QC(质量控制)经理,几乎是最容易被外界混淆的一对角色。两者的分工虽清晰,但职责和目标往往高度交叉。因此,当我们谈到“谁更有可能升任质量总监”时,这并不是一个简单的职位比较问题,而更像是对两种思维方式、职业路径和管理视角的深度考察。QC经理,问题终结者QC经理的世界,是充满数据、样本和判定标准的世界。他们是产品出厂前的最后一道防线,手里握着的是批次报告、不合格品记录、纠正措施流程……QC经理更像是一位“问题终结者”,目标是把不合格扼杀
    优思学院 2025-04-14 12:09 56浏览
  • 亥姆霍兹线圈的应用领域‌物理学研究‌:在原子物理中,用于研究塞曼效应;在磁学研究中,用于测试磁性材料的磁滞回线等特性;还可用于研究电子荷质比等实验‌。‌工程与技术领域‌:用于电子设备校准和测试,提供标准磁场环境;在大型加速器中用于磁场校准;用于电磁干扰模拟实验,测试电子设备在不同磁场干扰下的性能‌。‌生物医学领域‌:研究生物磁场效应,如探索磁场对生物细胞的影响;在生物医学工程基础研究中,提供可控磁场环境‌。‌其他应用‌:作为磁场发生装置产生标准磁场;用于地球磁场的抵消与补偿、地磁环境模拟;还可用
    锦正茂科技 2025-04-14 10:41 51浏览
  • 在公共安全、工业调度、户外作业等场景中,对讲机作为关键通信工具,正面临从“功能单一化”向“智能融合化”的转型需求。WT2605C蓝牙语音芯片凭借双模蓝牙架构、高扩展存储方案与全场景音频处理能力,推动传统对讲机实现无屏化操控、专业级音频解码与蓝牙音箱功能融合,为行业用户打造更高效、更灵活、更低成本的通信解决方案。一、无屏化交互革命:BLE指令重构操作逻辑针对工业环境中对讲机操作复杂、屏幕易损的痛点,WT2605C通过双模蓝牙(BR/EDR+BLE)与AT指令集,实现全链路无屏控制:手机APP远程控
    广州唯创电子 2025-04-14 09:08 33浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 96浏览
  •  亥姆霍兹线圈的制造材料选择需兼顾导电性、绝缘性、机械强度及磁场性能,具体分类如下:一、‌导线材料1、‌高纯度铜线:‌作为线圈绕制的核心材料,铜因其you异的导电性(电阻率低)和热稳定性成为shou选。漆包铜线通过表面绝缘漆层实现匝间绝缘,避免短路‌。2、‌其他导电材料‌ 铝线等材料可用于特定场景(如轻量化需求),但导电性和抗氧化性较铜略逊二、‌磁源材料‌1、‌永磁体‌如钕铁硼(NdFeB)或铁氧体,适用于无需外部电源的静态磁场生成,但磁场强度有限。2、‌电磁铁‌通过电流控制磁场强度,
    锦正茂科技 2025-04-14 10:22 32浏览
  • 一、磁场发生设备‌电磁铁‌:由铁芯和线圈组成,通过调节电流大小可产生3T以下的磁场,广泛应用于工业及实验室场景(如电磁起重机)。‌亥姆霍兹线圈‌:由一对平行共轴线圈组成,可在线圈间产生均匀磁场(几高斯至几百高斯),适用于物理实验中的磁场效应研究。‌螺线管‌:通过螺旋线圈产生长圆柱形均匀磁场,电流与磁场呈线性关系,常用于磁性材料研究及电子束聚焦。‌超导磁体‌:采用超导材料线圈,在低温下可产生3-20T的强磁场,用于核磁共振研究等高精度科研领域。‌多极电磁铁‌:支持四极、六极、八极等多极磁场,适用于
    锦正茂科技 2025-04-14 13:29 53浏览
  • MASSAGE GUN 筋膜枪拆解 今天给车子做保养,厂家送了一个筋膜枪。产品拿在手里还是挺有分量的。标价108元。通过海鲜市场一搜索,几十元不等,而且还是爆款。不多说,我们就来看看里面用了什么料,到底值几个钱。外观篇 首先给它来个开箱照,从外观看,确实还是很精致,一点都不逊色品牌产品。 从箱中取出筋膜枪,沉甸甸的。附上产品的各方位视角 产品的全家福 我装上球头,使用了一番,还真不赖,有不同的敲击速度和根据力度调节不同的档位。拆解篇 拿出我的螺丝套装,对产品开始进行拆解,首先
    zhusx123 2025-04-13 16:52 72浏览
  • 软瓦格化 RISC-V 处理器集群可加速设计并降低风险作者:John Min John Min是Arteris的客户成功副总裁。他拥有丰富的架构专业知识,能够成功管理可定制和标准处理器在功耗、尺寸和性能方面的设计权衡。他的背景包括利用 ARC、MIPS、x86 和定制媒体处理器来设计 CPU SoC,尤其擅长基于微处理器的 SoC。RISC-V 指令集架构 (ISA) 以其强大的功能、灵活性、低采用成本和开源基础而闻名,正在经历各个细分市场的快速增长。这种多功能 ISA 支持汽车、航空航天、国防
    ArterisIP 2025-04-14 10:52 68浏览
  •   电磁干扰测试系统软件:深度剖析   电磁干扰(EMI)测试系统软件,是电子设备电磁兼容性(EMC)测试的核心工具,在通信、汽车、航空航天、医疗设备等众多领域广泛应用。它的核心功能涵盖信号采集、频谱分析、干扰定位、合规性评估以及报告生成,旨在保障设备在复杂电磁环境中稳定运行。下面从功能、技术原理、应用场景、主流软件及发展趋势这五个方面展开详细解析。   应用案例  软件开发可以来这里,这个首肌开始是幺乌扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照你的顺序组合可以找到。   目前
    华盛恒辉l58ll334744 2025-04-14 10:02 27浏览
  •     电气间隙是指两个带电体在空气中的最短距离。导体、电介质(空气),最短距离,就是这个术语的要素了。        (图源:TI)    电气间隙是由安装类别决定的,或者更本质地说,是瞬态过电压的最大值来决定的,而不是工作电压的高低。安装类别见协议标准第007篇,瞬态过电压另见协议标准第009篇。    实际设计中怎么确定电气间隙?可以按照CAT,工作电压和绝缘等级来定。 
    电子知识打边炉 2025-04-13 18:01 78浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 58浏览
我要评论
0
7
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦