宋宝华:CPU是如何访问到内存的?--MMU最基本原理

原创 Linux阅码场 2023-11-09 08:01

由于很多童鞋大学的时候学《微机原理》都是打酱油,当老师是苍蝇在讲台上发噪音,导致MMU这些基本知识都没有搞清楚,所以对计算机的认识一塌糊涂,Linux也无法学通。然后我经常被问到各种奇葩到让人吐血的内存管理问题,这些问题显示出这些童鞋对最基本的MMU和页表工作机制不清楚。我觉得我不得不写点什么东西,让这些打酱油的童鞋,把基本的马步扎稳,当然这不是为了别人,也不是为了无私奉献,纯粹是为了避免无数次被问到吐血,迟早有一天吐血而亡。为了能够活地久一点,特作此文。

假设页表只有一级




对于一个有MMU的CPU而言,MMU开启后,CPU是这样寻址的:CPU任何时候,一切时候,发出的地址都是虚拟地址,这个虚拟地址发给MMU后,MMU通过页表来在页表里面查出来这个虚拟地址对应的物理地址是什么,从而去访问外面的内存条。MMU里面的页表地址寄存器,记录了页表本身的存放位置。


现在我们假设每一页的大小是4KB,而且假设页表只有一级,这个页表长成下面这个样子,页表的每一行是32个bit。

当CPU访问虚拟地址0的时候,MMU会去查上面页表的第0行,发现第0行没有命中,于是无论以何种形式(R读,W写,X执行)访问,MMU都会给CPU发出page fault,CPU自动跳到fault的代码去处理fault。

当CPU访问虚拟地址4KB的时候,MMU会去查上面页表的第1行(4KB/4KB=1),发现第1行命中,如果这个时候

  • 用户是执行读或者执行,则MMU去访问内存条的6MB这个地址,因为页表里面记录该页的权限是RX;

  • 用户是去写4KB,由于页表里面第1行记录的权限是RX,没有记录你有写的权限,MMU会给CPU发出page fault,CPU自动跳到fault的代码去处理fault。

当CPU访问虚拟地址8KB+16的时候,MMU会去查上面页表的第2行(8KB/4KB=2),发现第2行命中了物理地址8M,这个时候,MMU会访问内存条的8MB+16这个物理地址。当然,权限检查也是需要的。

 

当CPU访问虚拟地址3GB的时候,MMU会去查上面页表的第3GB/4KB行,表中记录命中了,查到虚拟地址3GB对应的物理地址是0,于是MMU去访问内存条上的地址0。但是,这个访问分成2种情况:

  • CPU在执行用户态程序的时候,去访问3GB,由于页表里面记录的U+K权限只有K,所以U是没权限的,MMU会给CPU发出page fault,CPU自动跳到fault的代码去处理fault;

  • CPU在执行内核态程序的时候,去访问3GB,由于页表里面记录的U+K权限只有K,所以K是有权限的,MMU不会给CPU发出page fault,程序正常执行。

 

由此可以得知,如果页表只有1级,每4KB的虚拟地址空间就需要页表里面的一行(32bit),那么CPU要覆盖到整个4GB的内存,就需要这个页表的大小是:

4GB/4KB *4 = 4MB。

注意页表是无缝全覆盖!!!你页表不覆盖全,CPU访问虚拟地址的时候,MMU都不知道查哪里了....

所以,这个页表的大小是4MB,覆盖了整个0-4GB的虚拟地址空间,任何一个虚拟地址,都可以用地址的高20位(由于一页是4KB,低12位就是叶内偏移了),作为页表这个表的行号去读对应的页表项。

这个查水表的过程,由MMU硬件自动完成。

现在我们假设在Linux里面有2个进程,一个是QQ,一个是Firefox,他们的页表分别如下:


当CPU在执行QQ的时候,Linux会把QQ的页表的物理地址255MB,填入MMU的页表地址寄存器,于是这个时候,QQ的页表生效。根据页表内容,CPU如果访问4KB这个虚拟地址的话,MMU访问内存条的6MB物理地址;CPU如果访问8KB这个虚拟地址的话,MMU访问内存条的8MB物理地址;CPU如果访问3GB这个虚拟地址的话,MMU访问内存条的0MB物理地址;

当CPU在执行Firefox的时候,Linux会把Firefox的页表的物理地址280MB,填入MMU的页表地址寄存器,于是这个时候,Firefox的页表生效,QQ的页表淡出江湖。根据页表内容,CPU如果访问4KB这个虚拟地址的话,MMU访问内存条的100MB物理地址;CPU如果访问8KB这个虚拟地址的话,MMU访问内存条的200MB物理地址;CPU如果访问3GB这个虚拟地址的话,MMU访问内存条的0MB物理地址。

上面我们发现一个共同点,QQ和Firefox去访问3GB虚拟地址的时候,最终MMU访问的都是0MB这个物理地址,具体原因非常简单,QQ和Firefox,这2张页表里面,3GB/4KB这一行,里面填的是完全一样的东东

多级页表:真实的存在


上面我们发现,如果采用一级页表的话,每个进程都需要1个4MB的页表,这个空间浪费还是很大,于是我们可以采用二级或者三级页表。举例如下,假设我们用地址的高10位作为一级页表的索引,中间10位作为2级页表的索引。CPU访问虚拟地址16,这个地址如果分解为10/10/12位的话,就是这个样子:

那么MMU会用0这个下标去访问一级页表(一级页表的地址填入MMU的页表地址寄存器)的第0行,第0行的内容写的是2MB(此处不再是最终的物理地址,而是二级页表的物理地址),证明二级页表的地址在2MB,于是MMU自动去以中间的10位作为下标,去查询位置在2MB的二级页表,在2级页表里面,最终查到第0页(地址范围0x00000000~0x00000FFF)这个虚拟地址的物理地址是1GB,于是MMU去访问内存条的1GB+16这个物理地址。

据以上分析,1级页表占据的内存是2的10次方,再乘以4,即4KB。而每个二级页表,也是2的10次方,再乘以4,即4KB。分级机制的主要好处是,二级页表不是一定存在了,比如一级页表的第2行不命中,也即如下地址都无效的话:


那么这一行对应的二级页表,就整个都不需要了,于是就省掉了这段区间4KB二级页表的内存占用。页表当然还有是三级甚至更多。

至于有多级页表的时候,其实MMU也只需要知道一级页表的基地址即可。每次切换进程的时候,把一级页表的地址重新填入MMU,把新的进程的页表激活即可。



Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 71浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦