来源:DeepTech深科技,谢谢
编辑:感知芯视界
自2014 年,首份亚太地区“35 岁以下科技创新 35 人”名单公布开始,至今已有 9 届。一批又一批年轻学者为学界、为社会做出的杰出贡献,正在被看见
近期,2023 年度“35 岁以下科技创新 35 人”亚太区入选名单揭晓。入选者研究方向包括材料、量子、能源、医学、光学、声学、天文学、人工智能、合成生物等多个能重要领域。
在这35位杰出青年中,有6位专注在传感器领域,不断为传感器带来了全新的研究成果。在这6位当中,有4位来自中国,进一步彰显我国在传感器产业发展的未来潜力。今天我们一起来了解这6位杰出青年及他们的研究成果。(排名按姓名首字母排序)
他开发了一种基于无标记荧光纳米传感器和微流体的新型单细胞分析方法,并提出了具有微观可控性的化学传感器制造技术的新概念。
现实世界正在向网络世界转变。传感技术通过将物理信息转化为电子数据,在当前和未来社会中扮演着重要角色。通过利用最先进的传感器工程和纳米技术,我们正在创造新的价值,并预测未来。成均馆大学助理教授 Sooyeon Cho,一直专注于如何利用最先进的传感器工程和纳米技术,来解决传统分析、诊断和疗法面临的多方面挑战。
Cho 和他的团队使用无标记荧光纳米传感器结构、人工智能以及包括光纤和微流体在内的高级硬件系统,开发了细胞及其产物的高通量和多元分析工具,为未来疗法和精准医学提供了一个全面的生物制药监测平台。
为了开发更好的用于未来全球大流行病的诊断方法,Cho 设计并开发了一种基于高通量诊断的快速无标记病毒蛋白传感器系统,无需任何抗体或受体设计。
他的团队提出了一种大面积、高分辨率纳米通道制造技术的新概念。该技术具有微观可控性,具备多种材料成分且不受组合限制。基于这种方法,他和团队制作了多元纳米传感通道库,并将其与具有低器件间差异的电子传感装置集成,应用于包括氢、酸性气体和挥发性有机化合物在内的各种目标分析物。
Cho 和他的团队希望可以缩小现有生化传感器系统与多尺度现实世界监测之间的差距,其最终目标是在多元数据的基础上,为社会带来创新的分析工具和科学见解。
他开发了新型的神经形态光学传感平台,可以更深入地了解人类视神经网络如何智能地“纠正”个别视网膜细胞的视力误差。
王凯现阶段专注于光电材料和器件在生物传感器和生物智能仿生等交叉领域的应用,包括材料学、微电子学、生物学、人工智能等多方面的内容。
通过结合材料、器件、系统三个层面的研究,王凯初步建立了一个全新的、能够对复杂视网膜系统进行简单拟态仿生的框架,并通过机器学习成功地证明了人工感光细胞器件的智能化“纠错”功能,从而实现了利用无机材料对有机生物的“智能视觉”的功能性复刻。
“人工视网膜”模仿了自然视网膜的工作机制,特别是其自我修复能力。不仅有助于医学界对失明和视觉障碍进行更有效的干预,还可以拓展到其他生物传感器和仿生学领域。
此外,王凯的研究还包括神经递质动态传感和机器学习辅助的生物体运动预测。前者能够实时、高灵敏地检测神经递质的释放和吸收,将有助于研究和治疗神经性疾病。后者借助先进的数据分析和机器学习算法,希望开发一种系统,从而预测和解释生物体在不同环境和情境下的运动和行为。
总体而言,其研究有望为全球性的视觉障碍问题和推动光电材料器件与未来生物医学、微电子学、人工智能等多个领域跨学科的研究提供参考和启示。
她发现了二维材料中的层间耦合作用机制,并通过压力实现了对层间耦合的调控,为进一步构建新型超高压传感器带来了新的机遇。
人类生活在一个大气压的压强环境,海洋深处等极端环境则是一个超高压的环境。传统的压强传感器受限于加工工艺及材料性能等各方面的限制,灵敏度和压强测量极限都存在一定的局限,例如目前传统压强传感器能够抵达的压强测量极限为一千个大气压左右,如果要进入到更极端的区域进行探测,就会因为传感器的测量极限及精度不够而无法实现。
现有的大多数压强传感器,如基于压电薄膜的电容式或压阻式传感器通常需要考虑灵敏度/响应度与动态范围之间的平衡:薄膜越薄,灵敏度越高,但无法承受高压;薄膜越厚,承受的压力越高,但对压力变化的响应要差得多。相比之下,二维材料仅有原子级厚度,可以承受非常高的压力(超过一百万个大气压)而不会损坏,同时其电子结构的改变还能反应压力变化。因此利用二维材料加工制造的超高压传感器有望实现 1011 帕的超高压检测。
夏娟还探索了许多其他能够调制二维材料层间耦合的方案。她在样品堆叠角度的高效表征方面取得了重要突破,将表征效率提高了一个数量级,从而进一步阐释了新颖的自旋谷极化现象,并有望用于制造新型二维半导体光电器件。通过利用插层和应力调控,她还揭示了二维材料结构演化和相变等物理过程。
她开发超高效有机发光二极管, 及可穿戴的健康电子传感器,实现无创、实时地连续测量人体生化浓度。
杨乐在剑桥大学理查德·弗兰德(Richard Friend)教授的指导下,在新材料中发现了一种新的发光机制。她开发了超高效有机发光二极管(Organic Electroluminescence Display,OLED),并创造了迄今为止溶液处理 OLED 的最高效率。这些 OLED 在打印和柔性显示技术方面具有巨大的潜力。如今杨乐继续在光电研究方面的研究,通过利用有机分子进行能源上转换的新发现,为稳定、可持续的节能使用案例创造价值。
杨乐与团队在新冠肺炎期间,从零开始建立了现场健康/健康监测传感系统。她将可穿戴的健康原位传感器命名为 WISH,这是一种位于皮肤上的小型薄片传感器,可以无创地实时连续测量生化浓度。市场上大多数可穿戴传感器集中于物理和电生理参数,缺乏无创实时连续的方法来监测生化参数。因此,在这个智能监控的数字时代中,存在“监测空白”。WISH 基于汗液中或皮肤上小分子的传感,通过汗液或无液体的电化学传感环境,能够随时随地进行健康监测,可同时测量人体皮肤上多个有机分子指标,并从用户的手机无线读取相关数据。
除了日常生活方式监测之外,这项技术为早期疾病检测(和干预)、异常警告、个性化医疗、远程医疗管理开辟了途径,并可以与其他新兴技术结合,例如数字孪生、量子传感、边缘计算、合成生物学、人工驱动分析等。
她实现了具有非传统波段适应性和自供能光学传感器的可行性,为下一代光学传感器、工业和医学成像、国防安全以及生物医疗领域的发展提供关键的技术和器件支持。
衣路英的研究重点是开发新型光学成像传感器和光学智能传感器,主要通过交叉融合创新的光学工程和发光材料基础科学,来解决传统透镜光学传感器难以解决的挑战。
光的方向测量可用于三维场景重建和高对比度相衬成像。传统方法基于微透镜阵列和光子晶体的方向测量只适用于紫外到近红外波长范围,并且角度测量范围有限(<2°)。
为解决上述问题,衣路英提出一种将入射光方向编码为材料发光颜色的新策略,突破性地将光场成像传感器的探测波长边界拓展到 X 射线。通过设计包含径向分布地三种分别发射红、绿和蓝光的发光纳米晶的方位角探测器,可以将探测器发光颜色映射到激发光的方向上。
阵列化成像传感器可突破传统光场成像的限制,适用于从 X 射线到可见光(0.002nm-550nm)的超宽波长范围,具有超过 80° 的角度测量范围和 0.0018° 的角度分辨率,能够被用于超广角雷达、AR 和 X 射线相衬 CT。
此外,通过设计双锥光纤结构,衣路英与合作者还扩展了 X 射线成像的波长范围到 10MeV(0.000124nm)伽马射线。这是一个重大的突破,极大地提升了光学传感器成像的能力。
在光学传感器革新医疗辅助技术方向,她首次开发了集成机械发光材料的自供能分布式光纤传感器并将其用于多模式机械力监测,还创新地开发了集成长余辉闪烁体的光纤传感器,用于剂量、pH 和温度监测而无需外部光源。
他开发了基于薄膜晶体管的柔性触觉传感器阵列,为构筑人工触觉感知提供了有效途径。
电子皮肤是柔性电子在生物医学领域的重要应用之一。皮肤是人体最大的器官,它质地柔软,使人类能够感知压力、痛觉、应变、温度等多种刺激,从而识别周围环境并进行日常活动。人体皮肤优异的材料特性和强大的感知功能启发了仿生皮肤电子学的发展,以模拟甚至超越人体皮肤的性能和功能,这对于健康监测、智能假肢、仿生机器人等技术的应用具有重要意义。
朱博文致力于开发在性质和功能上类似皮肤的柔性传感器。他开发了可图案化的、基于垂直排列的金纳米线阵列的、高性能本征可拉伸柔性电子材料,解决了长期以来导电材料之间界面结合力弱的问题,为柔性传感器、可拉伸晶体管等重要电子器件提供了优异的电极材料。
他还专注于利用工程解决方案构建有源像素触觉传感器阵列。他通过将传感器像素与薄膜晶体管链接,实现了大面积高密度触觉传感器阵列的单片集成,通过行列扫描方式实现任意像素的控制和读取,解决了传统柔性触觉传感器灵敏度低、响应慢、空间分辨率低等问题。
此外,他通过集成高灵敏压力传感器与基于 NbOx 的人工神经元器件,构建了可以实现压力刺激信号编码的人工机械力感受器,为未来神经形态机器人触觉感知系统以及复杂触觉信息处理提供了一种简单有效的策略。
2023 年度《麻省理工科技评论》“35 岁以下科技创新 35 人”亚太区入选名单(*按姓氏首字母排序):
*免责声明:本文版权归原作者所有,本文所用图片、文字如涉及作品版权,请第一时间联系我们删除。本平台旨在提供行业资讯,仅代表作者观点,不代表感知芯视界立场。
免费下载
半导体设备精选报告整理全了【41份】
最全第三代半导体产业报告大合集【57份】
激光雷达最全前沿报告集【20份】
物联网最新报告大全【704页PDF】
新材料产业七大方向全面梳理【153页PDF】
150+份传感器及产业报告【限时领】
汽车传感器超130份资源报告最全整理
揭秘半导体硅片报告大合集【20份】
MEMS传感器产业发展与趋势【附报告】