UCIe封装与异构算力集成

智能计算芯世界 2023-11-06 07:32

本文来自“2023新型算力中心调研报告(2023)”。更多内容参考“《海光CPU+DCU技术研究报告合集(上)》 ”,“《海光CPU+DCU技术研究报告合集(下)》 ”和“龙芯CPU技术研究报告合集”,“UCIe白皮书(终版)”。

UniversalChiplet Interconnect Express (UCIe)® 是一个开放的行业互连标准,可以实现小芯片之间的封装级互连,具有高带宽、低延迟、经济节能的优点。能够满足整个计算领域,包括云端、边缘端、企业、5G、汽车、高性能计算和移动设备等,对算力、内存、存储和互连不断增长的需求。UCIe 具有封装集成不同Die的能力,这些Die可以来自不同的晶圆厂、采用不同的设计和封装方式。

 

实现Chiplets封装集成的动机有很多。为了满足不断增长的性能需求,芯片面积不断增加,有些设计甚至会超出掩模版面积的限制,比如具有数百个核心的多核 CPU,或扇出非常大的交换[曹1] 电路(Switch)。即使在设计不超过面积限制的情况下,改用多个小芯片集成封装的方式也更有利于提升良率,实现芯片的跨市场复用。另外,多个相同Die的集成封装能够适用于大规模的应用场景。




图1:UCIe开启开放式封装级生态系统交付平台


实现Chiplet封装集成的另一个动机是为了从产品和项目的角度降低整体投资组合成本,并抢占产品市场。例如,图 1 所示的处理器核心可以最先进的工艺节点,用更高的成本换取极致的节能性能,而内存和 I/O 控制器功能可以复用已经建立好的旧工艺节点(n -1 或 n-2)。采用这种划分方式,可以减小Die的面积,从而提高产量。如图 2 所示,跨工艺节点的 IP 移植成本很高,而且随着工艺节点的进步,该成本增长非常迅速。若采用多Die集成模式,由于Die的功能不变,我们不必对其IP进行移植,便可在节省成本的同时实现抢占市场的可能。Chiplet封装集成模式还可以使用户能够自主选择Die的数量和类型,从而针对不同的产品类型做出不同的权衡。例如,用户可以根据自己的具体需求挑选任意数量的计算、内存和I/O Die,并无需针对具体需求进行Die的自主设计,这有利于降低产品的SKU成本。

 

Chiplet的封装集成允许厂商能够以快速且经济的方式提供定制解决方案。如图 1 所示,不同的应用场景可能需要不同的计算加速能力,但可以使用同一种核心、内存和 I/O。Chiplet的封装集成还允许厂商根据功能需求对不同的功能单元应用不同的工艺节点,并实现共同封装。例如,内存、逻辑、模拟和光学器件可以被应用不同的工艺技术,然后和Chiplet封装到一起。由于相比板级互连,封装级互连具有线长更短、布线更紧密的优点,因此,像内存访问这种需要高带宽的应用场景都可以以封装级集成的方式实现(例如HBM,High Bandwidth Memory)。

 

UCIe是封装互连的战略性成果,它以前瞻性的方式渗入各种应用模型,并蓄势待发,志在扭转行业未来。


UCIe 的 In package 本质就是将整个芯片封装视作主板,在基板上组装大量的芯粒,包括各种处理器、收发器,以及硬化的 IP。整体而言,UCIe 是一个基于并行连接的高性能系统接口,主要是面向 PCIe/CXL 设备(芯片)的“ 组 装”,如 CPU、GPU、DSA、FPGA、ASIC 等的互联。随着人工智能时代的到来,异构计算已经是显学,原则上,只要功率密度允许,这些异构计算单元的高密度集成可以交给 UCIe 完成。

△ UCIe的In package 本质就是将整个芯片封装视作主板

除了集成度的考虑,标准化的 Chiplet 也带来了功能和成本的灵活性,对于不需要的单元,在制造时不参与封装即可——而对于传统的处理器而言,对部分用户无用的单元常常成为无用的“暗硅”,意味着成本的浪费。一个典型的例子就是 DSA,如英特尔第四代可扩展至强处理器中的若干加速器,用户可以付费开启,但是,如果用户不付费呢?这些 DSA 其实已经制造出来了。

UCIe 包括协议层(Protocol Layer)、适配层(Adapter Layer)和物理层(Physical Layer)。协议层支持 PCIe 6.0、CXL 2.0 和 CXL 3.0,也支持用户自定义。根据不同的的封装等级,UCIe 也有不同的 Package module。通过用 UCIe 的适配层和 PHY 来替换 PCIe/CXL 的 PHY 和数据包,就可以实现更低功耗和性能更优的 Die-to-Die 互连接口。

△ UCIe 对两种封装的划分

UCIe 考虑了两种不同等级的封装:标准封装(Standard Package)和先进封装(Advanced Package),凸块间距、传输距离和能耗将有数量级的差异。譬如对于先进封装,凸块间距(Bump Pitch)为 25~55μm,对应的是采用硅中介层为代表的 2.5D 封装技术的特点。以英特尔的 EMIB 为例,当前的凸块间距即为 50μm 左右,未来将向 25μm,甚至 10μm 演进。台积电的 InFO、CoWoS 也会有类似的规格和演进。而标准封装(2D)的规格对应的是目前应用最为广泛的有机载板。

△ 英特尔先进封装的凸块间距演进

不同封装的信号密度也是有本质差异的,如标准封装模块对应的是 16 对数据线(TX、RX),而高级封装模块包含 64 对数据线,每 32 个数据管脚还提供 2 个额外的管脚用于 Lane 修复。如果需要更大的带宽,可以扩展更多的模块,且模块的频率是可以独立的。 

△ UCIe 规划了两种等级封装的性能目标

当然,UCIe 没有必要急于跟进封装技术的极限,更高密度的键合通常还是为私有(协议)接口准备的,典型的如存储器(SRAM、HMB、3D NAND的内部。UCIe 能够满足通用总线的连接需求即可,如 PCIe、UPI、NVLink 等。值得一提的是,UCIe 对高速 PCIe 的深度捆绑,注定了它“嫌贫爱富”的格局。

实际上,SoC(System on Chip)是一个相当宽泛的概念,UCIe 面向的可以看作是宏系统集成(Macro-System on Chip)。而在传统观念中适合低成本、高密度的 SoC 可能需要集成大量的收发器、传感器、块存储设备等等。再譬如,一些面向边缘场景的推理应用、视频流处理的 IP 设计企业相当活跃,这些 IP 可能需要更灵活的商品化落地方式。既然相对低速设备的集成不在 UCIe 的考虑范围内,低速、低成本接口的标准化尚有空间。
下载链接:
《华为:迈向智能世界白皮书2023版(合集)》
1、迈向智能世界白皮书2023版(计算)
2、迈向智能世界白皮书2023版(云计算) 3、迈向智能世界白皮书2023版(数字金融) 4、迈向智能世界白皮书2023版(数据通信) 5、迈向智能世界白皮书2023版(数据存储)

《FMS 2023闪存峰会CXL合集(1)》

《FMS 2023闪存峰会CXL合集(2)》
下一代超融合架构白皮书
《46+份超融合技术及报告合集》
《数据中心技术合集》
1、数据中心超融合以太技术白皮书
2、数据中心可持续发展能力要求 

3、数据中心绿色设计白皮书(2023) 

4、新型数据中心高安全技术体系白皮书

异构融合计算技术白皮书
超融合数据中心网络
中国联通的开放网络研究与实践
中国联通开放硬件网络设备白皮书
白牌网络及交换机白皮书汇总
1、掘金云数据中心白盒化趋势.pdf
2、商用交换芯片SDN支持现状分析.pdf
3、未来网络白皮书——白盒交换机技术白皮书.pdf
4、协议无关交换机架构技术与应用白皮书.pdf
5、中国联通开放硬件网络设备白皮书.pdf
6、中兴通讯CO重构技术白皮书.pdf
《2022网信自主创新调研报告(2023)》
《2022中国物联网行业研究报告》
2021年中国物联网云平台发展研究报告
《算力网络技术合集(1)》
1、算力网络关键技术及发展挑战分析 
2、中国算力网络全景洞察白皮书 
3、算力感知网络CAN技术白皮书(中国移动) 
4、算力时代网络运力研究白皮书 
5、数字中国建设关键基础设施,算力网络时代来临(2023) 
6、算力网络技术白皮书
《算力网络技术合集(2)》
7、算力网络场景下SLA约束的能耗优化微服务调度策略(2023) 
8、网络算力接入时延圈绘制展示研究和实践(2023) 
9、浅析面向算力时代全光底座的构建 
10、云渲染任务智能算力调度策略研究(2023) 
11、算力网络推进金融元宇宙落地(2023) 
12、全光算力网络关键技术及建设策略研究(2023)

数据中心绿色设计白皮书(2023)

存储系统性能和可靠性基础知识

云基建专题:AI驱动下光模块趋势展望及弹性测试

精华:数据库系统的分类和评测研究

可重构计算:软件可定义的计算引擎

近存及存内计算专题简介

集装箱冷板式液冷数据中心技术规范

浸没式液冷发展迅速,“巨芯冷却液”实现国产突破

两相浸没式液冷—系统制造的理想实践

浸没液冷服务器可靠性白皮书

天蝎5.0浸没式液冷整机柜技术规范

AIGC加速芯片级液冷散热市场爆发

某液冷服务器性能测试台的液冷系统设计

《智能存储与磁盘故障预测合集》

《内存技术应用研究及展望合集》


本号资料全部上传至知识星球,加入全栈云技术知识星球下载全部资料。





免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言删除,谢谢。



温馨提示:扫描二维码关注“全栈云技术架构”公众号,点击阅读原文进入“全栈云技术知识”星球获取10000+技术资料。



智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论 (0)
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 78浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 88浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 87浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 84浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 57浏览
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 114浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 130浏览
  • 一、磁场发生设备‌电磁铁‌:由铁芯和线圈组成,通过调节电流大小可产生3T以下的磁场,广泛应用于工业及实验室场景(如电磁起重机)。‌亥姆霍兹线圈‌:由一对平行共轴线圈组成,可在线圈间产生均匀磁场(几高斯至几百高斯),适用于物理实验中的磁场效应研究。‌螺线管‌:通过螺旋线圈产生长圆柱形均匀磁场,电流与磁场呈线性关系,常用于磁性材料研究及电子束聚焦。‌超导磁体‌:采用超导材料线圈,在低温下可产生3-20T的强磁场,用于核磁共振研究等高精度科研领域。‌多极电磁铁‌:支持四极、六极、八极等多极磁场,适用于
    锦正茂科技 2025-04-14 13:29 61浏览
  • 软瓦格化 RISC-V 处理器集群可加速设计并降低风险作者:John Min John Min是Arteris的客户成功副总裁。他拥有丰富的架构专业知识,能够成功管理可定制和标准处理器在功耗、尺寸和性能方面的设计权衡。他的背景包括利用 ARC、MIPS、x86 和定制媒体处理器来设计 CPU SoC,尤其擅长基于微处理器的 SoC。RISC-V 指令集架构 (ISA) 以其强大的功能、灵活性、低采用成本和开源基础而闻名,正在经历各个细分市场的快速增长。这种多功能 ISA 支持汽车、航空航天、国防
    ArterisIP 2025-04-14 10:52 104浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 118浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 87浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 69浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 140浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 107浏览
  • 在制造业或任何高度依赖产品质量的行业里,QA(质量保证)经理和QC(质量控制)经理,几乎是最容易被外界混淆的一对角色。两者的分工虽清晰,但职责和目标往往高度交叉。因此,当我们谈到“谁更有可能升任质量总监”时,这并不是一个简单的职位比较问题,而更像是对两种思维方式、职业路径和管理视角的深度考察。QC经理,问题终结者QC经理的世界,是充满数据、样本和判定标准的世界。他们是产品出厂前的最后一道防线,手里握着的是批次报告、不合格品记录、纠正措施流程……QC经理更像是一位“问题终结者”,目标是把不合格扼杀
    优思学院 2025-04-14 12:09 68浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦