信号完整性测试两大法宝--加重与均衡

凡亿PCB 2020-09-04 00:00

前言



随着信号速率的提高,信号质量会朝两个方面恶化。一方面由于时钟周期变短,固有抖动所带来的影响变得严重,举例来说,对于1Gbps的信号,1个时钟周期为1ns,峰值为50ps的随机抖动不会给系统带来太大的影响;但是对于10Gbps的信号,1个时钟周期为100ps,50ps的随机抖动对系统的影响是致命的。另一方面,速率提升使得通道的损耗变大,码间干扰会变得更加严重。这篇文章主要针对码间干扰的产生以及如何消除码间干扰进行分析。


码间干扰,又称ISI(Inter symbolinterference),顾名思义是不同信号(码元)之间的干扰,在说码间干扰之前,我们先说一下编码。

1

编码方式


作为一名工程师,我们分析和处理信号,并不仅仅关心信号本身,而是信号中所承载的信息。对于数字信号,最终表现出来的是一连串的二进制(0/1)数据,数据和电平之间有一定的编码关系,下面列举几种常见的编码方式——NRZ、NRZI、MLT-3。

NRZ即Non-Return to Zero Code, 非归零码,是最简单常见的编码方式,用0电位和1点位分别二进制的“0”和“1”,编码后速率不变,有很明显的直流成份,NRZ编码的最高频率基波是波特率的1/2。许多协议都是用的NRZ码,例如:PCIe、SATA、SAS和USB 3.0SS。

NRZI即Non-Return to Zero Inverted,非归零反转码,编码不改变信号速率。NRZI的特点是遇到数据“0”电平保持不变,遇到数据“1”电平翻转,NRZI极性翻转并不影响数据传输。和NRZ一样,NRZI编码的最高频率基波也是波特率的1/2,USB 2.0 HS协议使用的是NRZI编码。

MLT-3即Multi-Level Transmit -3,多电平传输码,MLT-3码跟NRZI码有点类似,其特点都是逢“1”跳变,逢“0”保持不变,并且编码后不改变信号速率。和NRZ/NRZI不同,MLT-3需要4 bit才完成一次完整周期跳变(NRZ和NRZI是2 bit),相对应的最高频率基波是波特率的1/4。百兆以太网(FE)使用的就是MLT-3编码。


图1 NRZ NRZI和MLT-3编码


由于现在高速场景都是使用2电平编码(PAM4尚未普及),NRZ和NRZI码型在物理层上面的表现并没有实质性的区别,所以我们下面以NRZ码为例。

如图2所示的链路的插损[2]如图3所示(相当于20inch FR4背板的损耗),从TX发出的10Gbps理想信号经过背板后在图2中1/2/3所示位置的信号和眼图如图4、图5和图6所示,图中左侧两个信号分别为理想信号和图2中各个不同位置的信号对比,右侧为图2中各个位置的眼图。



图2 互连背板链路示意图



图3 背板插损


    插损:介质损耗或InsertionLoss,简称IL,IL =-S21


可以看出,由于ISI的存在,接收端(图6)的眼图已经完全模糊,无法从信号中判断电平的’0’和’1’,如果不经过处理的话,数据从发送端传送到接收端会出现大量的误码。



图4 近端(位置1处)信号和眼图



图5  位置2处信号和眼图



图6 接收端(位置3处)信号和眼图


在插损很大时,在低频信号和高频信号交界的地方,最容易产生ISI。如图6中红圈部位所示,在一串如’11111101’这样的信号,先出现长串的’1’,然后接着是’01’信号,在长’1’信号向’01’信号切换的时候,由于放电时间不足,使得’0’电平严重偏离垂直参考点。所以ISI一般有两个必备条件:1)插损很大;2)低频信号和高频信号切换。消除ISI也需要从这两个方面来考虑。

减小插损一般来说有两种办法:一种是减小走线长度,另一种是使用更好板材的PCB以及更好的连接器,然而减小走线长度的话可能会影响布线,而使用更好的板材和连接器会大大增加系统的成本,所以这种方法本文中不再详述。


2

8B/10B编码


由于数据是随机的,当反复发送”010101”之类的电平时是信号中能够出现的最高基波频率成分,恒定为波特率的一半,但是由于在实际信号中出现连续的’1’或者连续的’0’信号的个数是不确定的,出现连续’0’或者’1’的个数越多,对信号质量的影响越大。图7为两种不同码型信号经过同一链路的仿真结果,上边是PRBS7,下边是PRBS9[3],可以明显看出PRBS9的TJ和ISI比PRBS7大。

限制信号中最长的连续’0’和’1’的个数可以改善ISI,8B/10B编码就是其中最常用的一种编码方式,8B/10B编码将8位数据分解成两组,一组3位、一组5位,经过编码之后变成一组4位和一组6位的10位数据,经过编码后的数据中连续’0’和’1’的个数不超过5个,另外,经过8B/10B编码后的数据’0’和’1’数量基本保持相等,使得信号的DC平衡。USB3.0、PCIe1.0、PCIe2.0和SATA等协议都使用8B/10B编码。类似的还有64B/66B、128B/130B编码等,同时在使用NRZI的USB 2.0中,为了限制连续高或者连续低电平的长度,规定在数据中连续出现6’1’之后自动插入1’0’,这也是这个目的。但是8B/10B编码会影响信号的有效带宽,每10比特信号中只传递8比特有效信号,先当于20%的带宽是浪费的。从PCIe2.0PCIe3.0的演进中,就放弃了8B/10B编码,线速率从5Gbps8Gbps但是实际的带宽却翻了一倍

图7 PRBS7和PRBS9的ISI


PRBS:伪随机码,PRBS后面的数字越大,出现的连续的’0’和’1’信号的个数就越长



3

加重和均衡


均衡可以分为发送端均衡和接收端均衡,发送端均衡称为加重或者FFE,接收端的均衡有CTLE和DFE两种。

FFE:FFE是Feed forward equalizers的缩写,它可以分为预加重(Pre-Emphasis)和去加重(De-Emphasis)的方法类似,都是通过在TX改变高、低频成分(如图8所示),区别是预加重是增加高频成分,去加重是减少低频成分,经过TX端的均衡后能够改善信号质量,现在一般都使用去加重的方式,常用的有2种——Pre cursor和Post cursor,Pre和Post如图9所示。一般情况下Post cursor使用较多,在链路较恶劣的时候加一些Pre cursor可以使眼图的“眼皮”变薄。De-Emphasis的大小是由高频部分和低频部分的比值决定的,高频部分电压和低频部分电压的比值越大,对抗链路差损的能力也就越强。下图的Pre cursor和Post cursor都是6dB,也就是高频电压是低频的两倍。FFE的优点是不会放大信号的噪声,另外,在恶劣的链路环境下,如果光依靠RX的均衡无法使得眼图睁开,在这种情况下我们推荐使用FFE。



图8 De-Emphasis上和Pre-Emphasis下



图9 Post cursor和Pre cursor


图10是链路中接收端经过加重后的眼图,经过8dB的Post cursor去加重后,眼图已经睁开。


图10  链路中接收端经过加重后的眼图


图11是加上8dB 去加重后链路中各个位置的眼图。从图11可以看出,在链路中芯片发送端以及位置1/2处的眼图都有严重的overshoot,这就是FFE的不足之处,由于在发送端增加了高频成分,在多Lane系统中会增加串扰,并且可能会导致EMC超标,在现在的高速系统中,会将较多的均衡的权重分配在接收端。



图11 经过加重后链路中各个位置的眼图

CTLE:CTLE是Continuous-time linearequalizer的缩写,它是有如图12频响曲线的放大电路,它们会对高频信号进行放大,对低频信号进行衰减,以补偿通道的插损。对待不同的链路,我们可以调节CTLE电路的参数(如增益、boost、零点、peak点等)获得恰当的频响曲线来进行补偿(如图13所示)。通常来说,CTLE电路各参数相互配合组成的组合越多,芯片应对不同场景链路的能力也就会越强,这种芯片通常还会集成CTLE的自适应算法,根据链路自动调节CTLE的参数以获得最优的参数。


图12 CTLE频响曲线示意图



图13 经过CTLE补偿的链路频响


图14是图13中信号经过CTLE均衡后得到的眼图。可以看出,CTLE补偿的效果和去加重相比要好一些。



图14 经过CTLE均衡后的眼图


但是在链路很长(链路插损很大)时,CTLE为了补偿链路的插损,通常会将高频进行放大,这样一方面会将高频噪声放大,降低系统的信噪比;另一方面,CTLE的温度特性相对较差,高温下的增益比低温小,所以在温度变化时不利于系统的稳定,在这个时候我们需要DFE的帮助。

DFE:DFE是Decisionfeedback equalizer的缩写,电路中DFE一般在CTLE之后。DFE的实现方式和FFE类似。DFE可以辅助CTLE改善信号质量,另外DFE可以实时地根据眼图的情况进行自适应调节,它可以用来补偿由于温度或者其他条件变化带来的链路和芯片(如CTLE)的变化,增加系统的稳定性。



图15 经过CTLE和DFE均衡后的眼图


在实际的使用过程中,需要FFE、CTLE和DFE三者相互配合使用,尤其是在链路条件相对复杂的情况下。下面是一个比较恶劣的线路,在5GHz处,链路的插损达到了约33dB(相当于40inch FR4 背板的损耗)。这个时候单纯靠FFE或者CTLE、DFE已经无法实现将眼图张开,这时候需要使用FFE+CTLE+DFE相互配合,使得在接收端的采样点处眼图能够完全张开,确保达到目标误码率。



图16 更恶劣的背板差损



图17 经过De-emphasis + CTLE + DFE的眼图

文章来源于网络,版权归原作者所有,如涉及版权或对版权有疑问,请第一时间与我们联系,感谢

看了又看

项目实战|揭秘!升压PFC电感上的二极管原来是这个作用

项目实战|电子工程师必须掌握的电路图集锦

项目实战|【干货】电源端口CE/RE问题如何解决

项目实战|电子工程师常常弄混的总线分类汇总


经验分享|理解串口通信以及232,485,422常见问题

经验分享|PCB设计中,3W原则、20H原则和五五原则都是什么?

经验分享|找到压敏电阻会被损坏的原因了!

经验分享|电磁兼容故障诊断与整改


直播预告|贯穿四大主题 轻松掌握天线阵列设计

直播回顾|【直播预告】PCB文件在不同软件互相转换介绍 

直播回顾|【公益直播】DFM在单板设计中有什么重要作用呢? 

直播回顾|免费学!基于Cadence的USB网卡开发设计实战


技能提升|PCB叠层设计

技能提升|超十年经验电源研发工程师手把手教你学!

技能提升|【弟子计划】名师一对一在线教学

技能提升|PCB行业福利,首款国产DFM可制造性设计分析软件“免费”用 


关于我们

凡亿教育,为打造电子设计精品教育品牌而诞生。旨在赋能在读大学生、应届毕业生、初入社会就业者、初中级设计工程师及电子爱好者的高端电子技术学习生态圈。旗下课程覆盖了嵌入式、单片机、电源设计、模拟技术、PCB设计、PCB仿真、软件开发、Lab应用、IC设计等,购买凡亿旗下课程,请点击下方小程序,登录后购买!ios用户请在公众号菜单栏依次选择凡亿课程-凡亿商城进行购买。



凡亿PCB 分享高速PCB设计、硬件设计、信号仿真、天线射频技术,提供技术交流、资料下载、综合提升电子应用开发能力!创立“凡亿教育”,致力做电子工程师的梦工厂,旨在赋能大学生、初中级电子工程师,倾力打造电子设计精品教育,逐步发展成系统
评论
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 100浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 122浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 139浏览
  • 1月9日,在2025国际消费电子展览会(CES)期间,广和通发布集智能语音交互及翻译、4G/5G全球漫游、随身热点、智能娱乐、充电续航等功能于一体的AI Buddy(AI陪伴)产品及解决方案,创新AI智能终端新品类。AI Buddy是一款信用卡尺寸的掌中轻薄智能设备,为用户带来实时翻译、个性化AI语音交互助手、AI影像识别、多模型账户服务、漫游资费服务、快速入网注册等高品质体验。为丰富用户视觉、听觉的智能化体验,AI Buddy通过蓝牙、Wi-Fi可配套OWS耳机、智能眼镜、智能音箱、智能手环遥
    物吾悟小通 2025-01-09 18:21 106浏览
  • 车机导航有看没有懂?智能汽车语系在地化不可轻忽!随着智能汽车市场全球化的蓬勃发展,近年来不同国家地区的「Automotive Localization」(汽车在地化)布局成为兵家必争之地,同时也是车厂在各国当地市场非常关键的营销利器。汽车在地化过程中举足轻重的「汽车语系在地化」,则是透过智能汽车产品文字与服务内容的设计订制,以对应不同国家地区用户的使用习惯偏好,除了让当地车主更能清楚理解车辆功能,也能进一步提高品牌满意度。客户问题与难处某车厂客户预计在台湾市场推出新一代车款,却由于车机导航开发人
    百佳泰测试实验室 2025-01-09 17:47 77浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 133浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 120浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 142浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 121浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 158浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦