智能车避障时的行为决策与路径规划技术解析

智驾最前沿 2023-11-04 08:15

--关注星标、回复“SOA--

↓免费领取:面向智能车辆开发的开放性SOA方案

背景

根据智能车决策规划模型以及考虑周围实时环境变化带来的环境约束和自身条件约束,为车辆提供可行使域的过程就是路径规划,路径规划分为全局和局部规划两种。全局路径规划是在已知地图信息的条件之下,同时利用环境的局部信息和车辆实时反馈信息,从而生成可行驶区域以及车辆的参考行驶路径。

欢迎关注「智驾最前沿」微信视频号

但是对于全局路径规划而言未能考虑驾驶方向、道路曲率、速度以及环境中所出现的障碍物,同时智能车在真实环境下会出现不可预测的因素,因此必须考虑局部环境因素,故局部路径规划便应运而生。

为了解决路径规划所带来的问题,现阶段已经有大量的方法被提出来。其中早期方法可分为三类:人工势场法、单元分解法、基于路网的方法。人工势场是通过模拟对目标的吸引与排斥从而产生一个阶梯状的势场,通过这个阶梯状的势场,按照阶梯势场的梯度找出最佳的可行驶路径。

该方法被广泛应用于机器人的路径规划。单元分解法是将环境切割成凸的无障碍区域,这些凸区域被定义为单元。路网规划与单元分解类似都是将环境离散,然后进行图搜索,从而找到一条无碰撞路径。可视图法是路网规划的一种改进方法,它是将两个可见的点连接成一条直线,从而用搜索算法进行寻找可行路径。

上述传统的路径规划方法大部分不会考虑智能车运动学或者动力学特性,规划的路径并不光滑,而且不考虑车辆的轨迹跟踪控制约束。基于多项式路径规划方法可以根据车辆初始状态与目标状态对需要变道的智能车进行变道过程中的路径规划,从而使得智能车在一定时间内可以到达指定车道。

其中在随着多项式次数的增多,曲线拟合效果就越好,但是次数的增多会伴随着参数求解过程复杂,一般采用五次多项式进行车辆换道避障的规划。其中五次多项式公式为:

You F等基于五次多项式构造变道轨迹函数组,分别在横向和纵向建立多项式,通过增加纵向自由度的形式解决变道超车纵向车速变化的问题。Guoqing G等利用五次多项式记录不同工况下的换道路径数据,根据已有的数据利用遗传算法和BP神经网络进行训练从而得到最优驾驶员模型。基于多项式的路径规划在纵向和侧向都可以达到期望效果。但在纵向车速变化情况下自适应能力较差。

B样条是另外一种比较特别的多项式拟合形式。它利用加权点生成中间状态来满足约束条件,在进行智能车辆路径规划过程中广泛应用。Guilin Z等在B三次样条的基础之上考虑了单轮模型并与电机动力限制相结合,将其应用在了单轮车上的路径规划。日本学者Maekawa T等在给定障碍物位置和工作区间几何条件的情况下利用B三次样条进行避障轨迹规划。

贝塞尔曲线以其线条光滑且曲率小被广泛应用。康奈尔大学在2005年DARPA挑战赛上利用贝塞尔曲线生成符合车辆动力学的路径。Ma L等利用贝塞尔曲线完成了道路上的行为决策和在线轨迹规划。Bae I等对三阶和五阶贝塞尔曲线进行对比,得出满足起始曲率为0且舒适性最优的五阶贝塞尔曲线,并根据五阶贝塞尔曲线实时控制智能驾驶车辆的横纵向行驶轨迹。


智能车避障算法设计

车辆换道避障的行为决策需要满足行驶稳定和安全舒适的驾驶员意图,本文所设计的行为决策模型,主要结合车辆动力学,设计了一个动态风险评估模型保证车辆在换道避障过程中不会出现车辆失稳和碰撞的情况。本文基于非解耦五次多项式进行路径规划的设计,考虑安全性约束、边界约束和非完整性约束多个约束条件。利用QP算法将原本路径规划过程中非凸问题转换为凸优化问题并求解出最优路径。

车辆行为决策规划

问题描述

在车辆的实际避障过程中,决策规划是自动驾驶最重要的部分之一。规划决策系统在处理完环境信息之后,基于车辆动力学的同时结合驾驶需求进行车辆行为的实时决策规划,主要分为行为决策和运动规划两部分,行为决策在满足交通规则、行驶安全等约束条件下生成驾驶意图;而运动规划主要是根据车辆状态和已知的环境信息,在考虑多重动态和多个约束条件下,确保车辆的安全性、舒适性和可靠性,实时获取车辆的期望轨迹。

坐标系转换

在Frenet坐标系下,非解耦五次多项式是弧长为自变量,横向偏移量为因变量的空间函数。在进行路径规划过程中通常以路径连续性、平滑性、安全性作为主要的评价指标。如图1所示,在Frenet坐标系下建立切线向量和法线向量,将智能车的运动状态时刻分成,使得车辆在拟合路径过程中,减少坐标信息的处理。

图1 Frenet坐标系

假设笛卡尔坐标系下车辆换道避障最优规划路径位置、曲率和航向角为:

其中为规划路径上的速度、航向角、曲率。上式中所得的关系变量是以时间t为自变量,转换为曲线坐标系以弧长为自变量:

上式中为车道中心线弧长并非局部路径长度。找出规划路径的曲率、速度、之间关系,即为简化推导过程,如图2所示,可得以下关系:

图2 笛卡尔坐标与曲线坐标系的关系

其中在上图中m点下笛卡尔坐标系的曲率,以时间t为参数,可得:

由上式(2)可知,为求m点在笛卡尔坐标系下曲率,需求m点在方向上的加速度和速度:

将(3)和(4)代入(2)得:

上式是局部路径关于时间t得一阶和二阶导,在Frenet坐标系下关于中心线弧长的函数关系为:

在实际弯道行驶过程中,局部路径的横向偏移量远小于车道中心线半径,故实际应用过程中,针对一个规划窗内的车辆动力学运动状态可忽略不计,即

行为决策模型设计

为了设计更为安全舒适的路径,本章节的车辆行为决策以车辆在直道上换道避障为例(弯道情况与其类似),在Frenet坐标系下进行行为决策规划。假设跟随车辆车宽为1.7m,设计的安全阈值为0.5m,即。车辆实际行驶的纵向距离和行驶纵向车速实时计算,当时,可进行换道避障,否则车辆存在碰撞或横向失稳风险。行为决策如下图3所示

图3 决策规划动作图

五次多项式路径规划

问题描述

根据行为决策结果,车辆将进行车道保持模式和换道避障模式的切换。其中两种模式在行驶过程中目标和参考线有所区别,本节主要以换道模式下的路径规划为例进行说明。

智能车动力学构型空间包含了时间维度、横向空间维度和纵向空间维度。在Frenet坐标系下既可以将车辆动力学问题优化成横向和纵向两个时空方向相互独立的问题,又可以将车辆动力学问题整合成单个横向时空优化问题,考虑换道过程中的路径的舒适性、安全性和平滑性等问题。

优化目标描述

(1)引导线选择

利用传感器可检测到车道线数据信息,其中相邻车道线目标车道中心线方程信息:

目标车道中心线为:

其中表示向左换道避障,表示向右换道避障,式(8)为换道避障的目标车道线。

目标车道中心线作为参考线并不能直接用于车辆控制,需经优化处理成目标轨迹即引导线方可使用。如图4所示,在Frenet坐标系下,引导线为待优化的期望车辆行驶轨迹。在实际环境下,引导线需满足多重约束条件,并且平滑过渡到参考线上。

图4 规划引导线

(2)优化目标

Frenet坐标系下,利用非解耦五次多项式描述目标行驶路径:

其中,为待定多项式系数。

关于非解耦五次多项式路径规划优化目标主要是换道过程中的误差值、横向位移、航向角、道路曲率、道路曲率变化率以及换到完成后的状态误差组成:

其中,是目标优化过程中的权重系数,X其中是运动过程中的纵向距离窗宽度。

其中定义待优化变量,优化目标可转换为:

其中,

关于非解耦的五次多项式路径规划的优化目标可等价于:

其中,

约束条件设置

其中约束主要包括外部、内部约束,内部约束是指车辆动力学或运动学限制从而带来的非完整约束,外部约束主要是外部环境、检测到的障碍物带来的约束。

1. 边界约束:假设车辆实际轨迹会一直沿着规划的路径向前运动,则对应的边界约束条件为

其中表示横向偏移量,表示航向偏移量。

根据边界约束条件,路径规划等式约束等价于:

2.安全性约束:在车辆避障换道过程中,为确保换道的安全性,路径规划满足的约束条件为:

换道过程中以左为正,则以车辆向左换道为例,如图5所示。其中当时,表示向右换道;当时,表示向左换道。代表路面宽度。

图5安全性约束示意图

非完整性约束

对于车辆行驶轨迹的曲率约束最主要的是非完整约束。其中考虑到Fernet坐标系下曲率计算的非线性,则在一个规划窗内车辆动力学状态的变化较小可直接忽略,即曲率可表示为:

对于车辆Ackerman转向几何的曲率约束最重要的是非完整性约束:

其中,表示与车辆转向相关的最大曲率。即:

非完整性约束即曲率约束主要是针对汽车横向轨迹进行约束,即将非线性的非完整约束(13)转换成非线性约束条件(14)。

依据安全性约束和非完整性约束条件等价于:

针对非解耦五次多项式路径规划的约束条件包含边界约束、安全性约束、非完整性约束即曲率约束。综上,在Frenet坐标系下,关于车辆非解耦的路径规划可以转换成求解标准的QP问题:

在标准QP模型(17)中,综合考虑非解耦五次多项式拟合目标路径的安全性约束、边界约束以及非完整性约束。因此,本节主要设计了换道过程中非解耦五次多项式路径规划模型,并成功转换为标准QP问题。


小结

在符合交通规则约束和行驶安全约束的条件下设计基于动力学的行为决策风险评估模型,利用非解耦五次多项式进行路径规划设计并将非解耦路径规划的非凸优化问题利用QP转化为标准的凸优化问题,从而求解出最优路径,最后利用已经确定好的LQR控制算法进行横向动力学控制,最终实现车辆的安全换道避障。

转载自智能运载装备研究所,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,我们将及时处理。

-- END --

智驾最前沿 「智驾最前沿」深耕自动驾驶领域技术、资讯等信息,解读行业现状、紧盯行业发展、挖掘行业前沿,致力于助力自动驾驶发展与落地!公众号:智驾最前沿
评论
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 113浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 161浏览
  • 影像质量应用于多个不同领域,无论是在娱乐、医疗或工业应用中,高质量的影像都是决策的关键基础。清晰的影像不仅能提升观看体验,还能保证关键细节的准确传达,例如:在医学影像中,它对诊断结果有着直接的影响!不仅如此,影像质量还影响了:▶ 压缩技术▶ 存储需求▶ 传输效率随着技术进步,影像质量的标准不断提高,对于研究与开发领域,理解并提升影像质量已成为不可忽视的重要课题。在图像处理的过程中,硬件与软件除了各自扮演着不可或缺的基础角色,有效地协作能够确保图像处理过程既高效又具有优异的质量。软硬件各扮演了什么
    百佳泰测试实验室 2025-01-03 10:39 139浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 16浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 290浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 173浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 23浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 29浏览
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 138浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 165浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 158浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 121浏览
  • Matter加持:新世代串流装置如何改变智能家居体验?随着现在智能家庭快速成长,串流装置(Streaming Device,以下简称Streaming Device)除了提供更卓越的影音体验,越来越多厂商开始推出支持Matter标准的串流产品,使其能作为智能家庭中枢,连结多种智能家电。消费者可以透过Matter的功能执行多样化功能,例如:开关灯、控制窗帘、对讲机开门,以及操作所有支持Matter的智能家电。此外,再搭配语音遥控器与语音助理,打造出一个更加智能、便捷的居家生活。支持Matter协议
    百佳泰测试实验室 2025-01-03 10:29 143浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 26浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 21浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦