SerDes 是SERializer串行 器/DESerializer解串器的简称,这种主流的高速的时分多路复用(TDM)点对点的串行通信技术可以充分利用通信的信道容量,提升通信速度,进而大量的降低通信成本。目前,商用基于SerDes架构的通信协议最高可实现单通道112Gbps的速率。
SerDes的主要作用就是把并行数据转化成为串行数据,或者将串行数据转化为并行数据的,能提供比并行传输更高带宽。
实际上PCIE,JESD204B等复杂协议都是基于SerDes协议,常见的电SerDes就PCIE等协议来说,更接近物理层,所以SerDes通常又被称之为物理层(PHY)器件。
正是因为SerDes的强电气属性,使得 Serdes具有以下优点:
①减少布线冲突(非独立时钟嵌入在数据流中,解决了限制数据传输速率的Signal时钟的Jilter问 题);带宽高 ;
②引脚数目少 ;
③抗噪声、抗干扰能力强(差分传输);
④降低开关噪声;
⑤扩展能力强;
⑥更低的功耗和封装成本;
SerDes的分类
SerDes支持非常多的的主流工业标准,比如Serial RapidIO ,FiberChannel(FC),PCI-Express (PCIE),Advanced Switching Interface,Serial ATA(SATA),1-Gb Ethernet,10-Gb Ethernet(XAUI),Infiniband 1X,4X,12X等。根据SerDes的结构的不同可以将其分为四类:
①并行时钟SerDes:将并行宽总线串行化为多个差分信号对,传送与数据并联的时钟。这些SerDes 比较便宜,在需要同时使用多个SerDes 的应用中,可以通过电缆或背板有效地扩展宽总线;
②8B/10B编码SerDes(最常见的结构):将每个数据字节映射到10bit代码,然后将其串行化为单一 信号对。10位代码是这样定义的:为接收器钟恢复提供足够的转换,并且保证直流平衡(即发送相 等数量的‘1’和‘0’)。这些属性使8B/10B编码SerDes 能够在有损耗的互连和光纤传输中以较少的信号失真高速运行;
③嵌入式时钟SerDes:将数据总线和时钟串化为一个串行信号对。两个时钟位,一高一低,在每个 时钟循环中内嵌串行数据流,对每个串行化字的开始和结束成帧,并且在串行流中建立定期的上升边沿。由于有效负载夹在嵌入式时钟位之间,因此数据有效负载字宽度并不限定于字节的倍数;
④位交错SerDes:将多个输入串行流中的位汇聚为更快的串行信号对。
SerDes收发器内部包括高速串并转换电路、时钟数据恢复电路、数据编解码电路、时钟纠正和通道绑定电路,为各种高速串行数据传输协议提供了物理层(PHY)基础。而主流的8B/10B编 码SerDes则主要由物理介质相关子层( PMD)、物理媒介适配层(Physical Media Attachment,PMA)和物理编码子层( Physical Coding Sublayer,PCS )所组成,且收发器的 TX发送端和RX接收端功能独立。
SerDes收发器内部的电路物理层结构图
各物理层的作用:
①PCS层,负责数据流的编码/解码,是标准的可综合CMOS数字逻辑,可以通过逻辑综合实现 软硬综合实现。
②PMA层,是数模混合CML/CMOS电路,负责负责串化/解串化,是理解SerDes区别于并行接 口的关键。
③PMD层,负责串行信号通信。
涉及到的相关模块:
①TXPLL:这个模块主要使用具有1ps以下的抖动的时钟为参考,输出数GHZ级的时钟。
②RXCDR(时钟恢复):这个模块是一个复杂的控制回路,作用是来追踪传入数据的平均相位, 并不管Path上的任何SI或失真,通常是通过复杂的相位旋转器或CDR驱动的锁相环来完成的。
③TXdriver:这个模块把序列化模块转化为差分信号。
④RX均衡器:此模块用连续的时间均衡器以及DFE(裁决反馈均衡器)来均衡高速效应,通常 需要一个自动增益的电路来促进均衡效果,RX均衡器通常以状态机逻辑和软件的形式来实现
自动校准。
转化过程:
①发送(TX)即并转串,简单的来说就是并行信号通过FiFO,传递给内部的8b/10b编码器、扰码器,防止数据连0/1,之后传递给串行器进行转化,经过均衡器均衡后,由驱动发出。
②接收(RX)即串转并,简单的来说就是输入的串行信号经过线性均衡器均衡后,去除了高速时钟的jilter后,CDR从数据中恢复Caputure时钟,并通过解串器转为对齐的并行信号,由驱动发出。
SerDes底层硬件
SerDes底层硬件包括早期的LVDS和现在CML:SerDes信号层采用的LVDS工作在155Mbps~1.25Gbps之间,而CML(电流模式信号)在600Mbps和10+ Gbps。因此现在SerDes一般使用CML。但是LVDS和CML信号可以互通,但要有外接电阻做电平转换。
高速逻辑电平的特性
LVDS、CML、LVPECL之间是有区别,但都使用差分传输Differential Transmission 信号传输的一种技术,区别于传统的一根信号线一根地线的非平衡型单端Single End Transmission 做法,差分传输在这两根线上都传输信号,这两个信号的振幅相同,相位相反。在这两根线上的传输的信号就是差分信号。信号接收端比较这两个电压的差值来判断发送端发送的逻辑状态。在电路板上,差分走线必须是等长、等宽、紧密靠近、且在同一层面的两根线。
资料整理网络,只用于学习交流,侵删
11月09日-10日将在上海举办一期SerDes课程,本期短期课程旨在通过提供 SerDes 空间所需的系统级和电路级概念来弥补这些差距。课程将从传统的模拟架构开始,逐步发展到今天基于 DSP 的均衡和定时恢复。本课程从传统的模拟混合信号 SerDes 架构开始,该架构如今仍适用于 UCI、HBM 和 XSR 解决方案。之后,我们将转向 ADC-DSP 解决方案。
--点击图片即转至课程页面
今天小编带来了:ISSCC2023套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。
1、深入理解SerDes(Serializer-Deserializer)之一
2、深入理解SerDes(Serializer-Deserializer)之二
3、科普:深入理解SerDes(Serializer-Deserializer)之三
4、资深工程师的ESD设计经验分享
5、干货分享,ESD防护方法及设计要点!
6、科普来了,一篇看懂ESD(静电保护)原理和设计!
7、锁相环(PLL)基本原理 及常见构建模块
8、当锁相环无法锁定时,该怎么处理的呢?
9、高性能FPGA中的高速SERDES接口
10、什么是毫米波技术?它与其他低频技术相比有何特点?
11、如何根据数据表规格算出锁相环(PLL)中的相位噪声
12、了解模数转换器(ADC):解密分辨率和采样率
13、究竟什么是锁相环(PLL)
14、如何模拟一个锁相环
15、了解锁相环(PLL)瞬态响应
16、如何优化锁相环(PLL)的瞬态响应
17、如何设计和仿真一个优化的锁相环
18、锁相环(PLL) 倍频:瞬态响应和频率合成
19、了解SAR ADC
20、了解 Delta-Sigma ADC
21、什么是数字 IC 设计?
22、什么是模拟 IC 设计?
23、什么是射频集成电路设计?
24、学习射频设计:选择合适的射频收发器 IC
25、连续时间 Sigma-Delta ADC:“无混叠”ADC
26、了解电压基准 IC 的噪声性能
27、数字还是模拟?I和Q的合并和分离应该怎么做?
28、良好通信链路性能的要求:IQ 调制和解调
29、如何为系统仿真建模数据转换器?
30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)
31、使用有效位数 (ENOB) 对 ADC 进行建模
32、以太网供电 (PoE) 的保护建议
33、保护高速接口的设计技巧
34、保护低速接口和电源电路设计技巧
35、使用互调多项式和有效位数对 ADC 进行建模
36、向 ADC 模型和 DAC 建模添加低通滤波器
37、揭秘芯片的内部设计原理和结构
38、Delta-Sigma ADCs中的噪声简介(一)
39、Delta-Sigma ADCs中的噪声简介(二)
40、Delta-Sigma ADCs 中的噪声简介(三)
41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)
42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)
43、放大器噪声对 Delta-Sigma ADCs 的影响(一)
44、放大器噪声对 Delta-Sigma ADCs 的影响(二)
45、参考电压噪声如何影响 Delta Sigma ADCs
46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声
47、时钟信号如何影响精密ADC
48、了解电源噪声如何影响 Delta-Sigma ADCs
49、运算放大器简介和特性
50、使用 Delta-Sigma ADCs 降低电源噪声的影响
51、如何设计带有运算放大器的精密电流泵
52、锁定放大器的基本原理
53、了解锁定放大器的类型和相关的噪声源
54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术
55、干货!《实用的RFIC技术》课程讲义
56、如何在您的下一个 PCB 设计中消除反射噪声
57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!
58、帮助你了解 SerDes!
1、免费公开课:ISCAS 2015 :The Future of Radios_ Behzad Razavi
2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)
3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)
4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs
5、免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)
6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)
7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动
8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi
9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块
10、免费公开课:ISSCC2020-小数N分频数字锁相环设计
11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)
12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础
13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础
14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)
15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)
16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe)
17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)
点击下方“公众号”,关注更多精彩
半导体人才招聘服务平台