美国芯片内战

芯潮IC 2023-11-03 12:00

 今日“芯”分享 


科技公司最终都是芯片公司?


来源 I 晚点LatePost

作者 I 邱豪 贺乾明

图片来源 I Unsplash




尽管人人都能用上手机,但 PC 处理器依然是现代生活的计算中心:近 20 亿人每天打开个人电脑工作、学习。这些电脑里的处理器再加上被装在数据中心和超级计算机里的数亿颗  PC  处理器在无形的数据世界里计算着一切,从推荐视频、记录股市交易,到分析战场情报,找到下一个轰炸目标。


过去 20 年里,这个重要的基础设施的竞争格局长久地维持静态。


上一场芯片大战后,几家头部公司牢牢控制着自己的位置。大多数时候,英特尔控制着超过 2/3 的市场,决定着明年 CPU 计算能力提升 8% 还是 10%;英伟达是在虚拟世界里描绘画面的首选,高通决定信号如何在空气里传播。三年前,苹果 M1 芯片推出,一度以超出想象的性能打破平静。但它的成功更多被外界归因于资本实力——果然只有钱最多的公司才可能造好芯片。


这一局面在过去一周几乎被彻底改写。并且向世界重复了一个朴素真理:纯粹的商业世界里,技术终会前进、垄断不可能永远持续,此前芯片市场的平静不过是在等待技术积累。


七天以来,一场围绕个人电脑的芯片战争在美国市场逐渐成型。至少六家市值数千亿美元的公司参与其中,向本来没有竞争关系的公司、甚至是合作伙伴发起进攻。


10 月 25 日,高通发布笔记本电脑芯片 Snapdragon X Elite,宣称其性能超过苹果的 M2 Max 和英特尔的同级别处理器,还说要为世界上其他笔记本电脑制造商提供 “与苹果竞争的领先解决方案”。


同一天,苹果预热了新的发布会,并在本周二推出新的 M3 系列处理器。以别无二家的 3 纳米技术,刷新了笔记本电脑的性能基准。


与此同时,多家美国媒体报道了英伟达和 AMD 的新计划:研发高性能、低功耗的笔记本电脑芯片方案,在两年内上市与苹果、高通竞争。


新的竞争正在向同级别市场扩散。英伟达要用最新的车用芯片 DRIVE Thor 解决从车内娱乐到自动驾驶的一切需求。特斯拉则像苹果一样,一颗一颗地将自家产品里的芯片换成自己的。


一场决定未来计算形态的芯片战争正在爆发,而战场又回到了硅谷。


01

共同的方向:

手机芯片反攻电脑、汽车、服务器


不论苹果的 M3 系列、还是高通的 Snapdragon X Elite,它们的结构看上去都不像是传统电脑的芯片,而更像是手机芯片——虽然尺寸会大一些。



传统的电脑中,不同公司生产的 CPU、显卡、内存条等零件被送去工厂,焊接在电路板上。苹果和高通的处理器都是 SoC(System On a Chip,片上系统)——CPU、GPU、内存、控制器等处理器内核都被集成在一个芯片封装里。台积电的工厂里就可以完成大部分生产工作。


类似的,英伟达下一代汽车芯片 Thor 也转向 SoC 设计。对性能要求更高的服务器芯片则是下一个突破目标。


转折点发生在 2020 年底,苹果发布采用 SoC 设计的 M1 芯片。一开始苹果只在入门级的电脑里用了新处理器,但性能已经追上前一年的顶级配置英特尔处理器电脑,续航还多出几个小时。


此前 14 年,苹果一直在 Mac 电脑上使用英特尔的 CPU。从 2015 年起,英特尔处理器的性能提升跌入个位数的百分比。这一度被视为摩尔定律行将就木的必然结果。


“SoC 里,CPU、GPU、内存等计算单元距离最多不过 1 厘米,可以通过晶圆直接互通,相比传统通过外部的 PCB 板的电路的方式,信息传输效率会大幅提升,也能降低功耗。”《芯片简史》作者汪波博士说。


如果把电脑完成一项任务看做做菜,传统的电脑中调度芯片就像是去不同的超市、摊位买食材,再做菜。SoC 相当于从一个冰箱里拿食材做菜。而 M1 芯片的 “食材” 更丰富,苹果针对人工智能、音视频编码、加密存储等一系列特定用途订制了专用的计算单元,以更快解决常见问题。这些功能都需要和 CPU 协作,缩短信息传输距离颇为必要。


第二年,苹果陆续发布性能更好的 M1 Pro、M1 Max、M1 Ultra。《连线》杂志称这些产品 “让摩尔定律保持了活力”。



英特尔也早早意识到了行业向 SoC 转移的趋势,并在 2012 年推出了适用于智能手机和上网电脑的 SoC 平台 Atom,但它对英特尔 x86 架构、自身芯片代工厂的依赖,都让它与苹果、高通等公司支持的 Arm 架构 + 台积电竞争中捉襟见肘,最终在 2016 年放弃尝试


“x86 属于复杂指令集,基于它的 CPU 性能强但功耗也大。GPU 同样是高功耗的处理器,把它们放一起做 SoC,散热会是一个极大麻烦。” 汪波说。


而且 Windows 笔记本电脑市场品牌众多、个人配置需求千变万化,一定程度上也限制了英特尔,它要尽可能提供同时满足多种需求、价格更低的 CPU,很难像苹果那样迅速迭代。


英特尔的 CEO 帕特·基辛格(Pat Gelsinger)同样意识到了苹果的威胁,他在 2021 年初告诉员工:“我们必须向 PC 生态系统提供比一家生活方式公司更好的产品”。


但它面临的对手不只有苹果。2020 年推出搭载 M1 芯片的 MacBook 后,苹果在笔记本电脑市场的销售份额翻了一倍到 11%。M1 的成功让高通等迫切想要进入的新公司们明确了接下来该怎么做,以及找谁做。


02

技术门槛降低:

芯片设计民主化、台积电解决制造


回头看来,各种设备上的芯片向 SoC 进化是理所当然,但期间过程极其复杂。从组建芯片设计团队到推出 M1,苹果花了 12 年。


在此期间,苹果通过高薪和并购网罗了曾在英特尔、高通、博通、Imagination 等芯片公司工作过的人才,进而一步一步将芯片里的计算单元替换为自研产品。先是弃用 Arm 公开发售的 CPU 内核设计、再是以自己的 GPU 取代了 Imagination 的设计,并自研了处理图像、编解码音频和视频、加速人工智能算法、加密存储等各种专用计算单元,推动着 iPhone 芯片每两年实现一次性能飞跃,才有了 M1 超过英特尔芯片的可能。



一个伟大产品的诞生往往也是一场超长马拉松结束。苹果第一代 Mac 电脑和第一代 iPhone 发布后,大批工程师在短时间里离职。苹果创始人史蒂夫·乔布斯和微软创始人比尔·盖茨(微软深度参与第一代 Mac 的软件研发)都将不止一次在采访中提及这样的离职潮,来说明自己的团队付出了多么超常的努力,并最终工作到力竭。


苹果芯片工程师则发现,一场马拉松的结束是下一场的开始。


根据 The Information 报道,苹果内部的芯片项目数量在过去十年中从个位数增加到几十个,但员工人数却没有以同样的速度增长


本周的发布会就是苹果工程师负担持续加重的例证。M1 系列芯片有四个规格,但苹果工程师只做了两个完整设计——M1 和 M1 Max,发布相隔近一年。M1 Pro 是 M1 Max 的缩水版,而 M1 Ultra 是 M1 Max 的拼接版。而本周苹果则同时发布了三个完全不同的设计——M3、M3 Pro、M3 Max。这让 M3 Pro 可以尺寸更小更便宜,M3 Max 可以追求极致性能。苹果的芯片更精确地服务了不同价位段的产品,但增加了芯片团队的工作量。




M1,M1 Pro/Max 是两个设计;M3、M3 Pro、M3 Max 用了三个设计。来源:X(@LuvLetter_moe)


一位苹果芯片工程师在接受采访时称,为了满足公司各个产品线迅速、稳定且大幅迭代芯片的需求,苹果的芯片工程师每周工作近 80 个小时——996 不过是 72 小时,通常还有午休——才能按时完成任务。


根据多家媒体统计,过去两年有数百名苹果芯片工程师离职。他们也把做高性能处理器的经验扩散开。


2019 年,苹果芯片部门平台架构高级总监杰拉德·威廉姆斯三世(Gerard Williams III)牵头创办了芯片公司 NUVIA。他于 2010 年加入苹果,此前在 Arm 工作了 12 年。在苹果的 9 年,带队开发了苹果所有 SoC 的 CPU,也是苹果 M1 Pro、M1 Max 的首席架构师。


与他一起创办 NUVIA 的另外两位芯片专家分别是:约翰·布鲁诺(John Bruno)和马努·古拉蒂(Manu Gulati),都有丰富的芯片工作履历。



根据 NUVIA 官网介绍,这批苹果芯片元老的目标是开发性能更强的 CPU,处理指数级增长的数据和不断增长的需求。他们的技术路线与苹果一致——从头设计一款兼容 Arm 生态的 CPU 内核。


M1 系列成功后,NUVIA 得到了一批大型科技公司的收购邀约。2021 年,高通从微软、英特尔、Meta 等公司竞争中胜出,花 14 亿美元收购。三位  NUVIA 创始人能从这笔交易中获得数亿美元收入——比苹果 CEO 蒂姆·库克(Tim Cook)的年收入还高。


NUVIA 团队带着上百名员工加入高通,其创始团队均担高通的高管。两年不到,高通新处理器的性能已经超过苹果 M2 系列。


曾经限制一家公司制造出高性能芯片的还有制造。在芯片 60 多年历史的大多数时间,掌控了芯片制造工厂基本上就等于掌控了芯片本身,英特尔一度靠着独占的先进晶圆厂垄断了芯片市场,竞争对手即使能设计出好的芯片,也没法用先进技术造出来。


直到 2017 年,英特尔建立的芯片垂直整合体系开始出现裂缝。靠着庞大的 iPhone 订单和苹果每两年大幅迭代芯片性能的要求,台积电的芯片制造工艺迅速超过英特尔。这一年,台积电造出 10 纳米制程芯片时,英特尔还在使用 14 纳米工艺。之后几年,台积电按照稳定节奏推动 7 纳米、5 纳米芯片变成现实,保持领先。



相同制程下英特尔的 x86 架构芯片性能好过 SoC 芯片中普遍使用的 Arm 架构,但双方制程的差距给 Arm 方案补上了性能短板。苹果在 2020 年发布的 M1 芯片使用了 5 纳米的工艺,而同年英特尔的笔记本电脑芯片还停留在 10 纳米(晶体管密度与台积电 7 纳米工艺相当)。


台积电的公开代工属性决定,任何一家希望做芯片的公司,不用大幅投入就能获得顶尖的制造工艺。高通的 X Elite 紧跟着苹果用上了 4 纳米工艺,虽然比最新的 M3 使用 3 纳米有一些差距,但已经超过了 M 系列的其他产品。


03

研发芯片不只得有钱

还得能靠芯片持续赚钱


芯片研发需要不间断的巨额投入,所以这也是为什么挑起竞争的总是那些巨头。巨头们不仅需要资深的芯片管理者,还需要成百上千的工程师团队。因此,研发人员和工程师的薪酬、福利是研发投入的一大部分。


2019 年开始,原本每年 “只” 愿意投 50 多亿美元做研发的高通,研发费用以大约每年 10 亿美元的规模递增。在截至今年三季度的 12 个月里,累计研发投入近 90 亿美元。



支撑这些公司如此密集投入的原因各不相同,但本质上它们都有非常稳定的 “税” 收,才有机会借着芯片技术带来的性能提升,带来更多收入,形成良性循环。


苹果每年卖出 2 亿多部 iPhone,每自研一个芯片不仅提升产品竞争力,还能拿走原本属于芯片供应商的利润。同时它的芯片又被用于电脑、手表、耳机、以及 Vision Pro。


高通依靠自己在移动通信领域拥有的大量专利和领先地位,从几乎每一部智能手机里收税 —— 也包括苹果。根据分析机构测算,苹果每卖出一部 iPhone 就要向高通支付 13 美元的无线专利授权费和 25 美元的基带芯片费用。每一年高通光是向苹果收的 “税” 差不多就撑得起全年研发费用。高通再把这些费用来研发更先进的骁龙芯片,让更多设备商离不开它。


类似的,AIGC 和大模型的需求爆发意味着,计算厂商和 AI 初创公司未来几年都需要大量采购英伟达 GPU。英伟达有了可靠的现金流,可以支持自研 CPU,在汽车和电脑市场更进一步。


一旦离开了如此高关联度的主业支撑,再有钱的大公司也要认真算账。Google 2016 年就想给自己的 Pixel 手机自研 SoC,之后从高通挖来 SoC 工程师史蒂夫·莫洛伊(Steve Molloy)担任芯片主管,在印度招聘了大量芯片工程师。


但 Pixel 系列手机发布至今 7 年,全球累计出货量为 3790 万部,还赶不上 iPhone 一个季度的销量。Google 的创始人们早已将权力分给 CFO,不会给没有回报前景无限资源。Google 自研 Pixel 芯片的量产计划已经推迟到 2025 年。


同样不顺的还有 Meta。Meta 于 2018 年组建了一个名为 Facebook Agile Silicon Team 的芯片团队,希望从易到难设计芯片,最终在 Quest 系列虚拟现实设备用上自研芯片。但 Quest 持续亏损,于是 Meta 将定制芯片的设计任务先后外包给了三星和联发科,最后放弃定制芯片,直接购买高通 XR 芯片。


Meta Quest 2 已经是迄今最畅销的 XR 设备,一年也不过卖 1000 万台左右。苹果即将发售的 Vision Pro 初期销量不会比它好,但其所需要的芯片研发成本,早已被年销 2 亿部的 iPhone 和 2600 万台的 Mac 摊薄。


04

AI、汽车和 XR,新的需求、新的税收机会


大约 60 年前,美国加州旧金山湾区南部的一串小城开始被称为 “硅谷”。这里一批企业推动了晶体管和集成电路的应用,催生芯片产业。他们的第一批客户是政府和军队。


1980 年代后,随着计算机普及、互联网诞生,消费者、企业取代政府机构成为硅谷的最大客户。苹果、英伟达、Google、Meta 等科技公司在此诞生。科技巨头们盘踞一方,赚走各自行业里的大多数利润,也离 “硅” 越来越远。一度,美国最重要的科技公司都专精于软件或互联网。


如果芯片需求依旧只停留在现有视频、表格、游戏,无论苹果、高通,还是英伟达、AMD,可能都不会如此全力以赴。但 AI、汽车和 XR 催生出新的计算需求,而消费电子市场的停滞则加剧了竞争的急迫性——每家公司都需要挤出更多利润。


目前 AI 已经有一些实际应用诞生。微软想把名为 “Copilot” 的 AI 助手塞进 Office 365、Bing 搜索、Outlook 邮件等几乎一切生产力工具里;苹果在用 Transformer 模型改进输入法(中文还不行);Adobe 的 AI 工具 Firefly 也将集成进 Photoshop、Illustrator、Premiere 等设计软件当中。


但是训练和推理大模型的算力资源消耗和成本非常夸张。无论是自己采购 GPU、还是向云计算商租用服务器,提供 AI 服务的公司们都面临严重的算力短缺和昂贵的运营成本。通过大模型普及的必经之路是用上每台电脑、每个手机的处理器。


这也是为什么从高通到苹果的发布会,都在强调新的芯片可以更好地支持移动设备本地跑大模型。苹果称 M3 Max 能够支持运行包含数十亿各参数规模的 Transformer 模型;高通则表示,首款搭载骁龙 X Elite 的 PC 将支持 130 亿参数模型的本地推理。


在可预见的未来,个人电脑依然是最重要的生产力工具。行业研究机构 Counterpoint 预计,AI 将为已经消沉多年的 PC 市场注入新的活力,到 2026 年,全球 AI PC 的渗透率将超过一半。在这个市场,苹果要用芯片留住最愿意花钱买电脑的顾客、高通要让 PC 厂商卖出更多电脑给自己交税、英伟达则要从 GPU 做到 CPU,拿走更多 PC 厂商的利润,三家公司在这里碰撞。


另一个潜在市场需求来自 XR。很难说这会是多大的市场,但苹果今年发布的 Vision Pro 已经为其它厂商指明了方向 —— 借助屏幕 “透视” 功能实现增强现实(AR)效果。要让它的视觉体验达到我们已经习惯的 “视网膜” 标准,需要单眼屏幕分辨率达到 6K。


Vision Pro 目前还只有 4K,已经需要把 M2 芯片戴在头上,再加一颗 R1 芯片实时处理传感器信息,内置风扇、外接电池。在 6K 精度下的实时渲染复杂画面,需要今天各家芯片所无法达到的性能和功耗。


汽车对于芯片算力的需求也在增长。随着电动化和智能化的加快,以及智能座舱和自动驾驶的普及,这些 “轮子上的数据中心” 吸引了一批芯片厂商的进入。汽车芯片也已经从原来通用、分散的单一功能芯片转向集成的多功能 SoC。


早前高通已经借骁龙 8155 将 7 纳米先进制程带入汽车芯片;而英伟达去年发布的下一代 SoC 芯片 Thor,单片算力最高可以达到 2000 TOPS,是其现款产品 Orin 的近 8 倍。高通要参与自动驾驶、英伟达则要做汽车的主芯片,特斯拉则不希望依赖其中任何一家。


新的环境驱动着这些科技公司转向芯片之争,而芯片之争很可能将决定之后谁才是科技公司。




*免责声明:本文由原作者创作。文章内容系其个人观点,芯潮IC转载仅为分享与讨论,不代表芯潮IC对该观点赞同或支持,如果有任何异议,请联系我们。

芯潮IC Group/

插播一条广告  📢


芯潮IC 愿意为群友搭建沟通和传播的渠道,除提供干货分享外,还可以免费帮忙发布商业需求、异业合作、求职招聘……谢谢各位同行的捧场,也希望我们的文章和服务对你真的有帮助,一起“芯”向未来!

扫码添加芯潮IC编辑「叙白」

入群聊聊行业八卦~

推荐阅读

深度解读丨

老钱香港,重走芯江湖


深度解读丨

“围猎”英伟达H100

深度解读丨

今年最大IPO诞生,市值4700亿

孙正义松了一口气

深度解读丨

3年拿不出新产品

投资人要撤了

深度解读丨

从20家大厂财报

一窥半导体复苏轨迹

更多精彩,点击关注

芯潮IC

微信号|xinchaoIC


芯潮IC 一起见证“芯”潮澎湃
评论
  • 本文介绍Android系统主板应用配置默认获取管理所有文件权限方法,基于触觉智能SBC3588行业主板演示,搭载了瑞芯微RK3588芯片,八核处理器,6T高算力NPU;音视频接口、通信接口等各类接口一应俱全,支持安卓Android、Linux、开源鸿蒙OpenHarmony、银河麒麟Kylin等操作系统。配置前提在配置前,建议先将应用配置成系统应用,不然配置后系统每次重启后都会弹窗提示是否获取权限。应用配置成系统应用,可参考以下链接方法:瑞芯微开发板/主板Android系统APK签名文件使用方法
    Industio_触觉智能 2025-03-12 14:34 54浏览
  •        随着人工智能算力集群的爆发式增长,以及5.5G/6G通信技术的演进,网络数据传输速率的需求正以每年30%的速度递增。万兆以太网(10G Base-T)作为支撑下一代数据中心、高端交换机的核心组件,其性能直接决定了网络设备的稳定性与效率。然而,万兆网络变压器的技术门槛极高:回波损耗需低于-20dB(比千兆产品严格30%),耐压值需突破1500V(传统产品仅为1000V),且需在高频信号下抑制电磁干扰。全球仅有6家企业具备规模化量产能力,而美信科
    中科领创 2025-03-13 11:24 40浏览
  • 曾经听过一个“隐形经理”的故事:有家公司,新人进来后,会惊讶地发现老板几乎从不在办公室。可大家依旧各司其职,还能在关键时刻自发协作,把项目完成得滴水不漏。新员工起初以为老板是“放羊式”管理,结果去茶水间和老员工聊过才发现,这位看似“隐形”的管理者其实“无处不在”,他提前铺好了企业文化、制度和激励机制,让一切运行自如。我的观点很简单:管理者的最高境界就是——“无为而治”。也就是说,你的存在感不需要每天都凸显,但你的思路、愿景、机制早已渗透到组织血液里。为什么呢?因为真正高明的管理,不在于事必躬亲,
    优思学院 2025-03-12 18:24 81浏览
  • 前言在快速迭代的科技浪潮中,汽车电子技术的飞速发展不仅重塑了行业的面貌,也对测试工具提出了更高的挑战与要求。作为汽车电子测试领域的先锋,TPT软件始终致力于为用户提供高效、精准、可靠的测试解决方案。新思科技出品的TPT软件迎来了又一次重大更新,最新版本TPT 2024.12将进一步满足汽车行业日益增长的测试需求,推动汽车电子技术的持续革新。基于当前汽车客户的实际需求与痛点,结合最新的技术趋势,对TPT软件进行了全面的优化与升级。从模型故障注入测试到服务器函数替代C代码函数,从更准确的需求链接到P
    北汇信息 2025-03-13 14:43 40浏览
  • 文/Leon编辑/cc孙聪颖作为全球AI领域的黑马,DeepSeek成功搅乱了中国AI大模型市场的格局。科技大厂们选择合作,接入其模型疯抢用户;而AI独角兽们则陷入两难境地,上演了“Do Or Die”的抉择。其中,有着“大模型六小虎”之称的六家AI独角兽公司(智谱AI、百川智能、月之暗面、MiniMax、阶跃星辰及零一万物),纷纷开始转型:2025年伊始,李开复的零一万物宣布转型,不再追逐超大模型,而是聚焦AI商业化应用;紧接着,消息称百川智能放弃B端金融市场,聚焦AI医疗;月之暗面开始削减K
    华尔街科技眼 2025-03-12 17:37 146浏览
  • 引言汽车行业正经历一场巨变。随着电动汽车、高级驾驶辅助系统(ADAS)和自动驾驶技术的普及,电子元件面临的要求从未如此严格。在这些复杂系统的核心,存在着一个看似简单却至关重要的元件——精密电阻。贞光科技代理品牌光颉科技的电阻选型过程,特别是在精度要求高达 0.01% 的薄膜和厚膜技术之间的选择,已成为全球汽车工程师的关键决策点。当几毫欧姆的差异可能影响传感器的灵敏度或控制系统的精确性时,选择正确的电阻不仅仅是满足规格的问题——它关系到车辆在极端条件下的安全性、可靠性和性能。在这份全面指南中,我们
    贞光科技 2025-03-12 17:25 92浏览
  • 一、行业背景与需求痛点智能电子指纹锁作为智能家居的核心入口,近年来市场规模持续增长,用户对产品的功能性、安全性和设计紧凑性提出更高要求:极致空间利用率:锁体内部PCB空间有限,需高度集成化设计。语音交互需求:操作引导(如指纹识别状态、低电量提醒)、安全告警(防撬、试错报警)等语音反馈。智能化扩展能力:集成传感器以增强安全性(如温度监测、防撬检测)和用户体验。成本与可靠性平衡:在复杂环境下确保低功耗、高稳定性,同时控制硬件成本。WTV380-P(QFN32)语音芯片凭借4mm×4mm超小封装、多传
    广州唯创电子 2025-03-13 09:24 41浏览
  • 北京时间3月11日,国内领先的二手消费电子产品交易和服务平台万物新生(爱回收)集团(纽交所股票代码:RERE)发布2024财年第四季度和全年业绩报告。财报显示,2024年第四季度万物新生集团总收入48.5亿元,超出业绩指引,同比增长25.2%。单季non-GAAP经营利润1.3亿元(non-GAAP口径,即经调整口径,均不含员工股权激励费用、无形资产摊销及因收购产生的递延成本,下同),并汇报创历史新高的GAAP净利润7742万元,同比增长近27倍。总览全年,万物新生总收入同比增长25.9%达到1
    华尔街科技眼 2025-03-13 12:23 48浏览
  • 在追求更快、更稳的无线通信路上,传统射频架构深陷带宽-功耗-成本的“不可能三角”:带宽每翻倍,系统复杂度与功耗增幅远超线性增长。传统方案通过“分立式功放+多级变频链路+JESD204B 接口”的组合试图平衡性能与成本,却难以满足实时性严苛的超大规模 MIMO 通信等场景需求。在此背景下,AXW49 射频开发板以“直采+异构”重构射频范式:基于 AMD Zynq UltraScale+™ RFSoC Gen3XCZU49DR 芯片的 16 通道 14 位 2.5GSPS ADC 与 16
    ALINX 2025-03-13 09:27 32浏览
  • 在海洋监测领域,基于无人艇能够实现高效、实时、自动化的海洋数据采集,从而为海洋环境保护、资源开发等提供有力支持。其中,无人艇的控制算法训练往往需要大量高质量的数据支持。然而,海洋数据采集也面临数据噪声和误差、数据融合与协同和复杂海洋环境适应等诸多挑战,制约着无人艇技术的发展。针对这些挑战,我们探索并推出一套基于多传感器融合的海洋数据采集系统,能够高效地采集和处理海洋环境中的多维度数据,为无人艇的自主航行和控制算法训练提供高质量的数据支持。一、方案架构无人艇要在复杂海上环境中实现自主导航,尤其是完
    康谋 2025-03-13 09:53 44浏览
  • 一、行业背景与用户需求随着健康消费升级,智能眼部按摩仪逐渐成为缓解眼疲劳、改善睡眠的热门产品。用户对这类设备的需求不再局限于基础按摩功能,而是追求更智能化、人性化的体验,例如:语音交互:实时反馈按摩模式、操作提示、安全提醒。环境感知:通过传感器检测佩戴状态、温度、压力等,提升安全性与舒适度。低功耗长续航:适应便携场景,延长设备使用时间。高性价比方案:在控制成本的同时实现功能多样化。针对这些需求,WTV380-8S语音芯片凭借其高性能、多传感器扩展能力及超高性价比,成为眼部按摩仪智能化升级的理想选
    广州唯创电子 2025-03-13 09:26 33浏览
  • 2025年,科技浪潮汹涌澎湃的当下,智能数字化变革正进行得如火如荼,从去年二季度开始,触觉智能RK3562核心板上市以来,受到了火爆的关注,上百家客户选用了此方案,也获得了众多的好评与认可,为客户的降本增效提供了广阔的空间。随着原厂的更新,功能也迎来了一波重大的更新,无论是商业级(RK3562)还是工业级(RK3562J),都可支持NPU和2×CAN,不再二选一。我们触觉智能做了一个艰难又大胆的决定,为大家带来两大重磅福利,请继续往下看~福利一:RK3562核心板149元特惠再续,支持2×CAN
    Industio_触觉智能 2025-03-12 14:45 27浏览
  • 文/杜杰编辑/cc孙聪颖‍主打影像功能的小米15 Ultra手机,成为2025开年的第一款旗舰机型。从发布节奏上来看,小米历代Ultra机型,几乎都选择在开年发布,远远早于其他厂商秋季主力机型的发布时间。这毫无疑问会掀起“Ultra旗舰大战”,今年影像手机将再次被卷上新高度。无意臆断小米是否有意“领跑”一场“军备竞赛”,但各种复杂的情绪难以掩盖。岁岁年年机不同,但将2-3年内记忆中那些关于旗舰机的发布会拼凑起来,会发现,包括小米在内,旗舰机的革新点,除了摄影参数的不同,似乎没什么明显变化。贵为旗
    华尔街科技眼 2025-03-13 12:30 60浏览
  • DeepSeek自成立之初就散发着大胆创新的气息。明明核心开发团队只有一百多人,却能以惊人的效率实现许多大厂望尘莫及的技术成果,原因不仅在于资金或硬件,而是在于扁平架构携手塑造的蜂窝创新生态。创办人梁文锋多次强调,与其与大厂竞争一时的人才风潮,不如全力培养自家的优质员工,形成不可替代的内部生态。正因这样,他对DeepSeek内部人才体系有着一套别具一格的见解。他十分重视中式教育价值,因而DeepSeek团队几乎清一色都是中国式学霸。许多人来自北大清华,或者在各种数据比赛中多次获奖,可谓百里挑一。
    优思学院 2025-03-13 12:15 47浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦