一款开源的正弦恒流信号源

TsinghuaJoking 2020-09-03 00:00

■ 背景


在全国大学生智能车竞赛中有一个传统的赛车引导的模式,就是使用电磁线引导车模运行。在 信号源[1] 驱动铺设在赛道上电磁线(漆包线),产生方波电流。电流的频率为20kHz, 电流峰值约为100mA 。

参赛同学制作的车模使用工字型电感(10mH)配合适当的谐振电容(6.8nF)来感应赛道周围的交变准稳态磁场,通过磁场的大小(多个传感器可以检测到电磁场的方向)来获得赛道的信息。

特别是今年(2020年第十五届)引入了 AI电磁组[2] 根据安装在车模上前后多个传感器,通过训练多层前馈神经网络来控制车模的运行。

本质上,驱动赛道电流是否是正弦波对于车模检测来讲并不是特别的重要。因为电磁检测基本上都采用了前端LC谐振回路来测量交表磁场的强度。但是在传统的信号源驱动大型赛道(特别是赛道铺设两圈电磁线)就会引信号源输出电流大小发生波动。为了解决这个问题,出现了两种方案:

  • 设计制作的能够稳定输出信号基波的信号源;
  • 允许比赛同学现场对信号源进行改动,包括更换自己的信号源。

在推文 傅里叶,请再帮我们一次吧....[3] 介绍了使用单片机软件来稳定信号源基波的方法。实际上,也可以直接通过硬件(LC滤波)来提取输出信号的基波,并进行稳定。

▲ 开源的信号源在加电工作状态

下面是佟超(原北京科技大学参赛队员)设计的一款 开源正弦波20kHz信号发生器 V2[4] ,广受参赛同学们的喜欢。

前几天佟超给我寄送过几块制作的电路板。并将相关的 信号源开源下载信息[4] 发送给我。下面来分析一下这款电源的基本工作原理。

01电源原理图


总的电路图可以从前面开源下载信息中看到。下面分别对于电路的几个主要部分进行分析。

电路的核心是一款基于 LGT8F684P[5] (据说这款单片机现在已经停产了)的8位单片机。MCU的主要功能:

  • 产生20kHz的SPWM信号(P1A,P1B)驱动后面的MOS桥电路。
  • 读取输出信号驱动级工作电压,反映信号输出的情况。
  • 驱动板上工作LED(绿色)指示工作状态:如果绿色熄灭,表示输出阻抗过小(输出短路了)。
▲ MCU及其工作电源电路

下图测量了MCU输出的P1A,P1B上的SPWM波形。SPWM频率大约是500kHz。每个周期(20kHz,50us)有25个脉冲输出。

▲ MCU产生的SPWM互补的波形

由于后期是直接驱动互补N-P沟道MOS管半桥输出信号。为了避免上下直通,所以在输出的两路SPWM脉冲之间留有死区时间。也就是保证上管先关断,下管再导通。

▲ 上下SPWM波形之间留有死区时间

通过示波器可以看到这个死区时间大约是180ns左右。

▲ 测量上下波形之间的死区时间大约180ns

这个电路板的精彩之处在后面的滤波以及恒流控制部分。

MCU产生的SPWM信号通过 EG27324[6] MOS驱动芯片驱动 WSP4606 (N-P互补功率MOS管,30V/7A-6A)输出功率信号。

输出信号先经过L3(150uH)和C7(100nF)低通滤波。L3 ,C7的谐振频率为:

代入实际数值,可以计算:

▲ 输出正弦波电路以及硬件恒流控制
▲ 经过低通滤波后的正弦波

输出的电压在经过L2,C15,C8的低通滤波,最后输出正弦电压波形。

输出信号电流通过R5,R6并联之后,形成电流反馈电压。该电压经过D9(BAV99)倍压整流之后,C4滤波形成U1(TPS61040D)开关升压电源的反馈电压。

TPS61040D是一款开关BOOST控制芯片,将工作5V电压升压到5~15V,提供U4桥电路作为工作电压。

当然,原始电路图还存在一些疑问:U3的工作电压?U4的工作电压?不可能有D10反向给出?

由于VCC5-15V升压的高低反映了输出阻抗的情况。当输出阻抗越大,VCC5-15越高,该电压经过分压之后有单片机读取,可以判断试试负载是否断路,或者断路。

02电路小结


1.电路的优点

该电路由于输出就是正弦波,所以通过电流采样进行峰峰倍压整流之后的电压与输出信号的幅值(基波)成正比。这一点与使用方波输出信号来比,对于基波的幅值测量更加精准。对于普通的方波输出,特别是电流波形变形之后,需要获得基波,则需要通过离散傅里叶变换(DFT)才能够检测到。

对于输出电流的恒流控制是由TPS61040D完成,就不需要单片机进行横流控制,这使得输出电流波动更加的平稳。

2.改进之处

为了简洁,这款信号源没有增加关于输出电流的精确显示,只能大体上通过LED的表示线路是否断路或者断路。在有的情况下,可能需要对电流源的大小根据环境的 影响进行适当的调整(增加或者减少),电路还缺少对输出电流设置的功能。

电路对于恒流控制使用了TPS61040内部闭环控制,当外部道路的电磁线圈电抗发生较大变化,特别是电感分量增,这会增加电流闭环回路的时间常数,在极端情况下,也会使得恒流变得不稳定。

最后一点,那就是电路所使用的单片机现在已经停产,因此本电路需要能够采用新一代的MCU进行更新。

最后,感谢佟超对于这款信号源的开源共享。

参考资料

[1]

开源信号源: https://zhuoqing.blog.csdn.net/article/details/104120702

[2]

AI电磁组: https://zhuoqing.blog.csdn.net/article/details/105055375

[3]

傅里叶,请再帮我们一次吧....: https://zhuoqing.blog.csdn.net/article/details/104120683

[4]

开源正弦波20kHz信号发生器 V2: https://zhuoqing.blog.csdn.net/article/details/108335489

[5]

LGT8F684P: https://www.electrodragon.com/w/LGT_PIC

[6]

EG27324: https://pdf1.alldatasheet.com/datasheet-pdf/view/1146405/EGMICRO/EG27324.html


TsinghuaJoking 这是一个公众号,它不端、不装,与你同游在课下、课上。 卓晴博士,清华大学中央主楼 626A。010-62773349, 13501115467,zhuoqing@tsinghua.edu.cn
评论
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 80浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 60浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 65浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 104浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 104浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 95浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 63浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 113浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 69浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 163浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 75浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 58浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦