【光电智造】基于机器视觉的点胶缺陷检测技术探讨

今日光电 2023-11-02 17:37
今日光电
       有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。欢迎来到今日光电!


----与智者为伍 为创新赋能----




随着工业自动化控制技术和计算机技术的飞速发展,工业自动化已经渗透到各个行业的生产中。自动点胶机在工业生产中得到了广泛应用,从微电路行业、电子产品行业、LED行业到一般工业的产品连接、注涂和密封,都发挥着重要作用。自动点胶机的应用不仅为产品的质量带来了大幅度的提升,而且提高了生产效率,可以实现复杂情况的点胶工艺。在此基础上,更加受关注的便是点胶的质量问题。在实际的生产中,由于多种因素的影响,例如自动点胶机的点胶工艺水平、胶水的温度等,生产出的胶水可能会产生含有气泡、胶条断裂、胶条宽度太粗或太细等缺陷。因此在各种需要通过点胶来实现连接效果的场合中,严格控制点胶的质量是极其重要的。依靠人力来对点胶进行缺陷检测显然是不合理的,由于其工作量大、效率低、 检测精度不高等特点,目前已不能满足实际的生产需求。为了解决上述问题,基于机器视觉的点胶缺 陷检测技术得到广泛的应用,其具有成本低、精度高、速度快的优势。

一、基于机器视觉检测技术现状

机器视觉是以普通计算机视觉研究为基础,并且同时涉及到光源照明技术、高速图像采集等方面实用技术的研究。在工业中,利用机器视觉构建一个完整的工业视觉应用系统需要结合多种技术,其中涵盖了机械工程、传感器、光学成像、运动控制、图像处理等方面。图1-1显示的是实际工业中机器视觉系统整体框架,主要包括被测目标、光源、光学成像系统、图像捕捉系统、图像采集与数字化、智能图像处理模块和运动控制模块。

随着科技的进步,机器视觉的发展速度也越来越快,国外的一些研发机构都开发出了很多基于图像处理的机器视觉系统软件,例如MatroxImaging Library(MIL)、Halcon、Matlab以及开源库OpenCV 等。由于这些软件在图像上具有很强大的处理能力, 所以已经被广泛的运用到实际的工业生产中了。目前,在机器视觉方面有两类算法,分别为数字图像处理算法和基于卷积神经网络的深度学习算法。

(1)基于数字图像处理的方法,主要通过图像处理等操作得到胶层的面积、质心以及自定义的复杂度公式进行对胶层的质量判定。传统的基于数字图像处理的方法具有操作简单,参数较少的优势,但也存在易受光照等客观因素影响,胶层分割效果差、缺陷分类差、通用性较差等缺点。

(2)随着大数据时代的来临,各类信息资源的轻易获取使得深度学习的应用也越来越广泛。特别是在卷积神经网络中,图片被深度卷积和池化之后,隐含层能够表现出比手动获取更加具有泛化性和抽象性的特征,从而在识别分类上取得了很好的效果。深度学习的出现为点胶缺陷的识别带来了更大的可行性。但深度学习需要足够多的训练数据和强大的计算能力,使得其在许多领域内的落地和应用受到了制约,而这也会直接影响到点缺陷胶的检测效率。 

二、点胶检测系统的光学检测方案

在进行点胶缺陷检测的过程中,图像信息的持续和稳定获取也是至关重要的一步,图像的好坏对于算法的设计困难程度有着很大的影响,因此,在点胶缺陷检测系统的设计过程中,需要对光学检测时的硬件进行选型。如图2-1所示,考虑到胶条为透明胶,存在反光现象,所以要求光源在各个角度的光照程度较为均匀,而同轴光具有高密度排列,成像清晰,亮度均匀等特点。此外,在要求光照亮度均匀的同时,由于部分胶条中存在气泡,而同轴光源距离胶条存在一定的距离,采集到的图片无法观察到气泡特征, 故考虑使用条形光源对胶条上方进行照射,使得气 泡特征可见。由于垂直照射方式具有照射面积大、 光照均匀性好等优点,故同轴光源选择垂直照射方式,而条形光源主要是为了对胶条进行光照加强, 同时为了不遮挡同轴光源,故选择侧面照射。 

图2-1

三、点胶检测系统的算法方案

3.1点胶缺陷的类别定义

在实际的点胶过程中,往往因为点胶量的大小、 点胶压力、针头大小、胶水的粘度以及胶水温度等因素,导致生产的胶条会存在各种各样的缺陷,从而影响产品的质量。工业生产中比较常见的几种缺陷种类,其具体定义如下所示:

(1)多胶:胶条中间部分宽度大于其他部分,如图 3-1 a)所示;

(2)少胶:胶条中间部分宽度小于其他部分,如图 3-1 b)所示;

(3)断胶:胶条出现一次或多次的断裂,如图3-1 c) 所示;

(4)扭曲:胶条整体存在多处弯曲现象,如图3-1 d) 所示;

(5)气泡:胶条中含有数目较多的气泡,如图3-1 e) 所示;

同时,在工业生产中符合生产要求的正常胶条如图 3-1 f)所示。

对于点胶缺陷检测有两点要求:

(1)由于缺陷检测的点胶图像数量多,检测需要的时间比较长,对检测速度要求比较高;

(2)点胶缺陷图片受环境影响存在质量上的不同,对于算法的准确性以及鲁棒性有很大的要求。

3.2基于数字图像处理的算法

在对胶条进行缺陷检测之前,必须先得到胶条的图片,而在实际的生产加工中,会将工件上的某块区域作为Mark定位点,采用图像匹配算法来寻找该Mark点的位置,从而得到胶条的具体位置,由此在工业摄像头得到工件图片后,无需对整幅图片进行缺陷分析,同时也去除了一些干扰区域,方便了视觉算法的后续处理。以下为针对点胶缺陷相应的基于数字图像处理的方法:

(1)多胶少胶:对于胶条多胶少胶的缺陷检测,首先 对图片进行相应的预处理操作,得到二值化图像后进行胶条两侧轮廓的获取,对提取到的轮廓区域进行水平和垂直方向的投影,通过计算像素值数量的最大值和最小值的差值以及像素值投影图中曲线形状来判断是否存在缺陷和具体类型。

(2)断胶:对于胶条断胶缺陷检测,根据胶条断裂图 片的特征,对图片进行预处理后先进行闭运算,断开胶条之间的细小连接,之后进行轮廓的获取,通过计算各个轮廓所包含的面积来作为判断缺陷是否存在的标准。

(3)扭曲:针对胶条扭曲缺陷检测,通过计算寻找到 的轮廓的凸缺陷的面积(即轮廓面积与其凸包面积的差值)来作为判断是否存在扭曲缺陷的标准。

(4)气泡:检测是否存在直径和面积较大的气泡。由 于气泡的特征是圆形,所以利用霍夫圆变换来检测图片中的圆形数量,同时计算其面积,通过对面积和数量进行阈值设定,来判断气泡缺陷的存在。

图3-2深度学习检测系统搭建流程

· 深度学习模型的选择

一般在利用深度学习算法进行缺陷检测时,首 先要确定的是网络模型。因为胶条种类分为6类,类别数量不是很多,故我们可选择AlexNet、MobileNet 以及Lenet-5、U-net等网络深度不同的或者更优质的网络模型。

· 训练方案改进

往往经典网络模型的准确率不会特别高,并不 能满足我们的需求,所以我们需要对训练方法进行改进。通常通过数据增强、迁移学习以及改进网络结构三个方面对模型进行改进。其中在实际生产中,一般在数据层上都有缺陷样本图片较少、缺陷样本不均衡等等问题,而对模型进行训练时,神经网络的参数数量又非常巨大,要想使得这些参数正常工作则需要大量的数据进行训练。

在工业领域中,可以在人为制造缺陷、数据增 广、生成对抗网络、迁移学习等手段解决相应的训 练数据问题。如图3-3为深度学习数据支撑手段。

在训练过程中进行相应微调是必不可少的。过拟合现象在深度学习中屡见不鲜,如果网络模型出现此类问题,那么该网络就无法正常使用,为了解决这个问题,一般会使用模型集成的方法,即训练多个模型进行组合。但是由于模型数量的增多,无论是训练过程还是测试过程,都会带来时间的浪费。由Hinton提出的dropout,在网络训练过程中,对网络层中的参数以一定概率进行归零操作,每一次训练都可以看作是在训练不同的神经网络,所以dropout相当于是对多个网络取平均,同时减少了神经元之间的复杂共适应性,可以有效地抑制过拟合现象。当然实际训练过程中,网络结构的改进方式有很多,没有最优的模型,只有符合要求更优的模型。

四、结论

在实际的点胶过程中,由于多种因素的影响容 易出现各种缺陷,因此在对胶条进行缺陷检测时, 更多的是采用机器视觉的方法,从而达到提高生产效率和降低成本的目的,进而使得产品更加具有竞争力。目前,在机器视觉方面有两类算法,分别为数字图像处理算法和基于卷积神经网络的深度学习算法。针对基于数字图像处理的视觉算法,在简单的缺陷检测方面成本较低,速度和精度也能够达到要求,但是在算法层面缺少通用性,对于每一种缺陷都要设计特定的算法进行检测。深度学习算法相对图像处理算法在处理新类别的图片方面较为简单,对于不同的缺陷只要重新进行标注再训练后就可以进行缺陷检测,不仅如此深度学习算法对于复杂情况的缺陷检测效果比图像处理算法好,但是深度学习算法也有大量的图片数据获取成本较高、产线换 型检测响应较慢的问题。当然,随着深度学习的高速发展和当前大数据时代的信息获取能力的增强,相信深度学习在未来会更多地落地到生活场景中去。

来源机械视觉沙龙


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566


评论
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 112浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 58浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 125浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 73浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 124浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 120浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 105浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 102浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦