UART自定义通信协议代码实现方法

原创 strongerHuang 2023-11-02 08:21

关注+星标公众,不错过精彩内容

作者 | strongerHuang

微信公众号 | strongerHuang

我们学习单片机,首先接触的可能是点灯(GPIO),再次就是串口(UART)。


串口是常用的一种通信接口,也是学嵌入式必备掌握的一项知识,但我发现有很多小伙伴只知道用串口输出或者打印一些数据,却不知道如何用串口进行数据传输和通信。


这里就给大家分享一下串口通信协议、自定义通信协议,以及实现的原理。


什么通信协议?

通信协议不难理解,就是两个(或多个)设备之间进行通信,必须要遵循的一种协议。


百度百科的解释:

通信协议是指双方实体完成通信或服务所必须遵循的规则和约定。通过通信信道和设备互连起来的多个不同地理位置的数据通信系统,要使其能协同工作实现信息交换和资源共享,它们之间必须具有共同的语言。交流什么、怎样交流及何时交流,都必须遵循某种互相都能接受的规则。这个规则就是通信协议。


相应该有很多读者都买过一些基于串口通信的模块,市面上很多基于串口通信的模块都是自定义通信协议,有的比较简单,有的相对复杂一点。


举一个很简单的串口通信协议的例子:比如只传输一个温度值,只有三个字节的通信协议:

帧头

温度值

帧尾




5A

一字节数值

3B


这种看起来是不是很简单?它也是一种通信协议。


只是说这种通信协议应用的场合相对比较简单(一对一两个设备之间),同时,它存在很多弊端。


简单通信协议的问题

上面那种只有三个字节的通信协议,相信大家都看明白了。虽然它也能通信,也能传输数据,但它存在一系列的问题。


比如:多个设备连接在一条总线(比如485)上,怎么判断传输给谁?(没有设备信息)


还比如:处于一个干扰环境,你能保障传输数据正确吗?(没有校验信息)


再比如:我想传输多个不确定长度的数据,该怎么办?(没有长度信息)。


上面这一系列问题,相信做过自定义通信的朋友都了解。


所以,在通信协议里面要约定更多的“协议信息”,这样才能保证通信的完整。


通信协议常见内容

基于串口的通信协议通常不能太复杂,因为串口通信速率、抗干扰能力以及其他各方面原因,相对于TCP/IP这种通信协议,是一种很轻量级的通信协议。


所以,基于串口的通信,除了一些通用的通信协议(比如:Modubs、MAVLink)之外,很多时候,工程师都会根据自己项目情况,自定义通信协议。


下面简单描述下常见自定义通信协议的一些要点内容。

(这是一些常见的协议内容,可能不同情况,其协议内容不同)


1.帧头

帧头,就是一帧通信数据的开头。

有的通信协议帧头只有一个,有的有两个,比如:5A、A5作为帧头。


2.设备地址/类型

设备地址或者设备类型,通常是用于多种设备之间,为了方便区分不同设备。


这种情况,需要在协议或者附录中要描述各种设备类型信息,方便开发者编码查询。


当然,有些固定的两种设备之间通信,可能没有这个选项。


3.命令/指令

命令/指令比较常见,一般是不同的操作,用不同的命令来区分。


举例:温度:0x01;湿度:0x02;


4.命令类型/功能码

这个选项对命令进一步补充。比如:读、写操作。


举例:读Flash:0x01; 写Flash:0x02;


5.数据长度

数据长度这个选项,可能有的协议会把该选项提到前面设备地址位置,把命令这些信息算在“长度”里面。


这个主要是方便协议(接收)解析的时候,统计接收数据长度。


比如:有时候传输一个有效数据,有时候要传输多个有效数据,甚至传输一个数组的数据。这个时候,传输的一帧数据就是不定长数据,就必须要有数据长度来约束。


有的长度是一个字节,其范围:0x01 ~ 0xFF,有的可能要求一次性传输更多,就用两个字节表示,其范围0x0001 ~ 0xFFFFF。


当然,有的通信长度是固定的长度(比如固定只传输、温度、湿度这两个数据),其协议可能没有这个选项。


6.数据

数据就不用描述了,就是你传输的实实在在的数据,比如温度:25℃。


7.帧尾

有些协议可能没有帧尾,这个应该是可有可无的一个选项。


8.校验码

校验码是一个比较重要的内容,一般正规一点的通信协议都有这个选项,原因很简单,通信很容易受到干扰,或者其他原因,导致传输数据出错。


如果有校验码,就能比较有效避免数据传输出错的的情况。


校验码的方式有很多,校验和、CRC校验算是比较常见的,用于自定义协议中的校验方式。


还有一点,有的协议可能把校验码放在倒数第二,帧尾放在最后位置。


通信协议代码实现

自定义通信协议,代码实现的方式有很多种,怎么说呢,“条条大路通罗马”你只需要按照你协议要写实现代码就行。


当然,实现的同时,需要考虑你项目实际情况,比如通信数据比较多,要用消息队列(FIFO),还比如,如果协议复杂,最好封装结构体等。


下面分享一些以前用到的代码,可能没有描述更多细节,但一些思想可以借鉴。


1.消息数据发送

a.通过串口直接发送每一个字节

这种对于新手来说都能理解,这里分享一个之前DGUS串口屏的例子:

#define DGUS_FRAME_HEAD1 0xA5 //DGUS屏帧头1#define DGUS_FRAME_HEAD2 0x5A //DGUS屏帧头2
#define DGUS_CMD_W_REG 0x80 //DGUS写寄存器指令#define DGUS_CMD_R_REG 0x81 //DGUS读寄存器指令#define DGUS_CMD_W_DATA 0x82 //DGUS写数据指令#define DGUS_CMD_R_DATA 0x83 //DGUS读数据指令#define DGUS_CMD_W_CURVE 0x85 //DGUS写曲线指令
/* DGUS寄存器地址 */#define DGUS_REG_VERSION 0x00 //DGUS版本#define DGUS_REG_LED_NOW 0x01 //LED背光亮度#define DGUS_REG_BZ_TIME 0x02 //蜂鸣器时长#define DGUS_REG_PIC_ID 0x03 //显示页面ID#define DGUS_REG_TP_FLAG 0x05 //触摸坐标更新标志#define DGUS_REG_TP_STATUS 0x06 //坐标状态#define DGUS_REG_TP_POSITION 0x07 //坐标位置#define DGUS_REG_TPC_ENABLE 0x0B //触控使能#define DGUS_REG_RTC_NOW 0x20 //当前RTCS
//往DGDS屏指定寄存器写一字节数据void DGUS_REG_WriteWord(uint8_t RegAddr, uint16_t Data){ DGUS_SendByte(DGUS_FRAME_HEAD1); DGUS_SendByte(DGUS_FRAME_HEAD2); DGUS_SendByte(0x04);
DGUS_SendByte(DGUS_CMD_W_REG); //指令 DGUS_SendByte(RegAddr); //地址
DGUS_SendByte((uint8_t)(Data>>8)); //数据 DGUS_SendByte((uint8_t)(Data&0xFF));}
//往DGDS屏指定地址写一字节数据void DGUS_DATA_WriteWord(uint16_t DataAddr, uint16_t Data){ DGUS_SendByte(DGUS_FRAME_HEAD1); DGUS_SendByte(DGUS_FRAME_HEAD2); DGUS_SendByte(0x05);
DGUS_SendByte(DGUS_CMD_W_DATA); //指令
DGUS_SendByte((uint8_t)(DataAddr>>8)); //地址 DGUS_SendByte((uint8_t)(DataAddr&0xFF));
DGUS_SendByte((uint8_t)(Data>>8)); //数据 DGUS_SendByte((uint8_t)(Data&0xFF));}


b.通过消息队列发送

在上面基础上,用一个buf装下消息,然后“打包”到消息队列,通过消息队列的方式(FIFO)发送出去。

static uint8_t sDGUS_SendBuf[DGUS_PACKAGE_LEN];
//往DGDS屏指定寄存器写一字节数据void DGUS_REG_WriteWord(uint8_t RegAddr, uint16_t Data){ sDGUS_SendBuf[0] = DGUS_FRAME_HEAD1; //帧头 sDGUS_SendBuf[1] = DGUS_FRAME_HEAD2; sDGUS_SendBuf[2] = 0x06; //长度 sDGUS_SendBuf[3] = DGUS_CMD_W_CTRL; //指令 sDGUS_SendBuf[4] = RegAddr; //地址 sDGUS_SendBuf[5] = (uint8_t)(Data>>8); //数据 sDGUS_SendBuf[6] = (uint8_t)(Data&0xFF);
DGUS_CRC16(&sDGUS_SendBuf[3], sDGUS_SendBuf[2] - 2, &sDGUS_CRC_H, &sDGUS_CRC_L); sDGUS_SendBuf[7] = sDGUS_CRC_H; //校验 sDGUS_SendBuf[8] = sDGUS_CRC_L;
DGUSSend_Packet_ToQueue(sDGUS_SendBuf, sDGUS_SendBuf[2] + 3);}
//往DGDS屏指定地址写一字节数据void DGUS_DATA_WriteWord(uint16_t DataAddr, uint16_t Data){ sDGUS_SendBuf[0] = DGUS_FRAME_HEAD1; //帧头 sDGUS_SendBuf[1] = DGUS_FRAME_HEAD2; sDGUS_SendBuf[2] = 0x07; //长度 sDGUS_SendBuf[3] = DGUS_CMD_W_DATA; //指令 sDGUS_SendBuf[4] = (uint8_t)(DataAddr>>8); //地址 sDGUS_SendBuf[5] = (uint8_t)(DataAddr&0xFF); sDGUS_SendBuf[6] = (uint8_t)(Data>>8); //数据 sDGUS_SendBuf[7] = (uint8_t)(Data&0xFF);
DGUS_CRC16(&sDGUS_SendBuf[3], sDGUS_SendBuf[2] - 2, &sDGUS_CRC_H, &sDGUS_CRC_L); sDGUS_SendBuf[8] = sDGUS_CRC_H; //校验 sDGUS_SendBuf[9] = sDGUS_CRC_L;
DGUSSend_Packet_ToQueue(sDGUS_SendBuf, sDGUS_SendBuf[2] + 3);}


c.用“结构体代替数组SendBuf”方式

结构体对数组更方便引用,也方便管理,所以,结构体方式相比数组buf更高级,也更实用。(当然,如果成员比较多,如果用临时变量方式也会导致占用过多堆栈的情况)


比如:

typedef struct{ uint8_t Head1; //帧头1 uint8_t Head2; //帧头2 uint8_t Len; //长度 uint8_t Cmd; //命令 uint8_t Data[DGUS_DATA_LEN]; //数据 uint16_t CRC16; //CRC校验}DGUS_PACKAGE_TypeDef;


d.其他更多

串口发送数据的方式有很多,比如用DMA的方式替代消息队列的方式。


2.消息数据接收

串口消息接收,通常串口中断接收的方式居多,当然,也有很少情况用轮询的方式接收数据。


a.常规中断接收

还是以DGUS串口屏为例,描述一种简单又常见的中断接收方式:

void DGUS_ISRHandler(uint8_t Data){ static uint8_t sDgus_RxNum = 0; //数量 static uint8_t sDgus_RxBuf[DGUS_PACKAGE_LEN]; static portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
sDgus_RxBuf[gDGUS_RxCnt] = Data; gDGUS_RxCnt++;
/* 判断帧头 */ if(sDgus_RxBuf[0] != DGUS_FRAME_HEAD1) //接收到帧头1 { gDGUS_RxCnt = 0; return; } if((2 == gDGUS_RxCnt) && (sDgus_RxBuf[1] != DGUS_FRAME_HEAD2)) { gDGUS_RxCnt = 0; return; }
/* 确定一帧数据长度 */ if(gDGUS_RxCnt == 3) { sDgus_RxNum = sDgus_RxBuf[2] + 3; }
/* 接收完一帧数据 */ if((6 <= gDGUS_RxCnt) && (sDgus_RxNum <= gDGUS_RxCnt)) { gDGUS_RxCnt = 0;
if(xDGUSRcvQueue != NULL) //解析成功, 加入队列 { xQueueSendFromISR(xDGUSRcvQueue, &sDgus_RxBuf[0], &xHigherPriorityTaskWoken); portEND_SWITCHING_ISR(xHigherPriorityTaskWoken); } }}


b.增加超时检测

接收数据有可能存在接收了一半,中断因为某种原因中断了,这时候,超时检测也很有必要。


比如:用多余的MCU定时器做一个超时计数的处理,接收到一个数据,开始计时,超过1ms没有接收到下一个数据,就丢掉这一包(前面接收的)数据。

static void DGUS_TimingAndUpdate(uint16_t Nms){ sDGUSTiming_Nms_Num = Nms; TIM_SetCounter(DGUS_TIM, 0); //设置计数值为0 TIM_Cmd(DGUS_TIM, ENABLE); //启动定时器}
void DGUS_COM_IRQHandler(void){ if((DGUS_COM->SR & USART_FLAG_RXNE) == USART_FLAG_RXNE) { DGUS_TimingAndUpdate(5); //更新定时(防止超时) DGUS_ISRHandler((uint8_t)USART_ReceiveData(DGUS_COM)); }}


c.更多

接收和发送一样,实现方法有很多种,比如接收同样也可以用结构体方式。但有一点,都需要结合你实际需求来编码。


最后

以上自定义协议内容仅供参考,最终用哪些、占用几个字节都与你实际需求有关。


基于串口的自定义通信协议,有千差万别,比如:MCU处理能力、设备多少、通信内容等都与你自定义协议有关。


有的可能只需要很简单的通信协议就能满足要求。有的可能需要更复杂的协议才能满足。


最后强调两点:

1.以上举例并不是完整的代码(有些细节没有描述出来),主要是供大家学习这种编程思想,或者实现方式。


2.一份好的通信协议代码,必定有一定容错处理,比如:发送完成检测、接收超时检测、数据出错检测等等。所以说,以上代码并不是完整的代码。


------------ END ------------


●专栏《嵌入式工具
●专栏《嵌入式开发》
●专栏《Keil教程》
●嵌入式专栏精选教程

关注公众号回复“加群”按规则加入技术交流群,回复“1024”查看更多内容。




点击“阅读原文”查看更多分享。

strongerHuang 作者黄工,高级嵌入式软件工程师,分享嵌入式软硬件、物联网、单片机、开发工具、电子等内容。
评论
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 65浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 119浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 163浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 91浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 69浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 70浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 151浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 76浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 163浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 59浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 151浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 118浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦