综述:3D打印可定制“微针”及其生物医学应用

MEMS 2023-11-01 00:03

微针(MNs)是一种新兴的微创技术,采用高度在10到1000微米之间的针头用于治疗、疾病监测和诊断。常用微针的制造方法是微注射成型技术,具有可扩展的优势,但微成型无法快速定制尺寸、几何形状和结构,而此正是决定微针功能和效果的关键因素。3D打印技术提供了一种有前景的替代方案,可以制造出高精度的微针,从而提高微针的性能。3D打印微针具有可定制性和可一步成型,在个体化和按需治疗领域具有巨大的应用潜力。

近日,来自新加坡科技研究局(A*STAR)的Kun Liang教授团队对3D打印可定制微针的设计和制造及其在生物医学领域的应用进行了综述。相关论文以“Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications”为题发表在Bioactive Materials期刊上。该综述概述了设计微针的关键参数,并介绍了制造新一代微针的各种3D打印技术,重点介绍3D打印微针在生物医学应用方面取得的进展。最后,对3D打印微针的未来转化和进入市场方面前景提出见解。

图1 综述设计及机制示意图

微针设计考虑因素

在设计微针时应考虑以下几个因素,确保能以最佳方式发挥功能。在理想情况下,微针应能穿透皮肤,穿透深度应能将受试者的疼痛和不适感降至最低,接着递送活性成分或提取生物物质。微针的参数不仅影响微针的功能,还可用来提高其功效。(1)微针的尺寸和几何形状是影响微针皮肤穿透的最重要参数;(2)纵横比(定义为微针高度与基底宽度之比)会影响微针皮肤插入难易度和机械强度;(3)同时,必须优化微针的高度,控制其所需的穿透深度,尽量减少疼痛、出血和感染;(4)增加微针密度可增加单个贴片的载药量,但超过最佳密度会减小微针间距,并由于"钉床"效应而降低皮肤插入效率;(5)微针的几何形状是另一个可用于增强皮肤穿透力、机械强度、输送效果和组织粘附性的因素。

微针的制造

为实现所需的设计,人们已经探索了许多制造方法,包括微成型、微冲压、光刻和液滴空气吹塑以及电拉伸等。其中,微成型是最广泛采用的方法。这是一种分两步进行的工艺,首先利用蚀刻或其他方法制造模具,然后将模具用作铸造微针的反模板。虽然微成型工艺能有效重复生产标准化微针,但微针的设计复杂性和可定制性有限。随着对更简单、一致和低成本生产用于特定应用复杂微针设计的需求不断增加,研究人员一直在共同努力探索其他制造方法。

3D打印微针

用于制造微针的3D打印方法主要有两种:材料沉积和大桶光聚合。最常见的材料沉积方法是熔融沉积成型(FDM)和材料喷射(MJ)。大桶光聚合(VP)是一种用于制造微针的光基3D打印方法,包括立体光刻(SLA)、数字光处理(DLP)、连续液体界面生产(CLIP)和双光子聚合(TPP)等技术。

图2 用于微针制造的3D打印技术

(1)材料沉积

FDM由一组夹辊组成,可产生挤压熔融材料的压力。固体热塑性聚合物长丝放入机器中,在机器喷嘴中加热并作为熔融聚合物逐层挤出到构建板上。由于下一层是在上一层完全冷却凝固之前打印出来的,因此两层会融合在一起。这一过程不断重复,直到计算机辅助设计(CAD)软件设计的整个模型成型。FDM是最普遍、最经济实惠的材料沉积打印方法。由于FDM打印机既便宜又容易获得,常常受到研究人员的青睐。FDM的制造成本较低,但其主要局限是打印分辨率较低。因此,FDM打印的微针通常需要后加工步骤来提高微针的分辨率。

(2)大桶光聚合技术

VP是一种3D打印技术,在大桶中光固化液体,通过逐层工艺打印出构造物。最常用的VP技术包括SLA、DLP、CLIP和TPP,主要区别在于光源和平台不同。VP的高分辨率可快速制造出复杂几何形状的小型结构,因此近年来VP打印往往成为微针等复杂生物医学设备快速原型制造的首选。

图3 采用各种VP 3D打印技术制造的微针

3D打印微针的生物医学应用

近年来,3D打印的出现极大促进了微针的生物医学应用,其多功能性设计、易定制性和高度复杂性不仅提高了微针的给药效果,还为给药以外的新应用领域提供可能,如生物提取和生物传感。

(1)透皮给药

微针微创给药可大大减少病人的不适和疼痛,并降低皮肤创伤和感染风险,而皮肤创伤和感染是皮下注射常见的不良反应。此外,与透皮贴片和局部制剂等现有方法相比,微针可提高药物的生物利用度。对于一些口服药物,如蛋白质、抗体、抗原和其他生物活性化合物,使用微针给药是一种更好的选择,这些药物吸收效率较低,在胃肠道中会被降解。传统的微针制备方法在药物释放可调性、药物负载量和药效等方面受到限制。3D打印技术可微针几何形状定制,用于改善这些问题。例如,3D打印可精确制造复杂微针结构,从而适应不同药物释放机制。通过VP和材料沉积技术制造的实心微针可以涂上药物,并通过被动释放的方式释放到皮肤中。利用3D打印技术的多功能性,3D打印的微针可以设计集成功能,以便在温度和pH值等外部刺激下主动释放药物。因此,3D打印微针作为一种可行的给药方式有望在胰岛素局部给药、癌症治疗和感染控制等方面发挥作用。

图4 用于透皮给药的3D打印微针

(2)提取生物样本

皮肤是人体最大的器官,富含大量的生物标记物,因此研究人员一直在研究如何利用微针提取生物样本,如血液、ISF和组织样本,用于疾病诊断和监测。虽然按体积计算,70%的真皮由ISF组成,但一直缺乏有效的方法在对皮肤造成最小损伤的情况下收集足够的ISF用于分析。目前提取ISF的方法包括抽吸水泡,这种方法可能会受到细胞内物质和炎症标志物的污染,原因是为了制造水泡需要将表皮与真皮分离。反向离子透入法,其中涉及电流、微透析和开流微灌注,这两种方法分别涉及植入半透膜或钢网管。微针为提取生物流体、组织和细胞提供了一种相对快速、微创和友好的选择。

图5 用于提取生物样本的3D打印微针

(3)生物传感

电化学生物传感器是微针最常用的生物传感技术,通过反应过程中产生的生理化学信号检测体内生物或化学物质。由于微针能够透过角质层,可直接评估富含生物标记物的真皮层ISF。基于微针的生物传感器可对皮肤病变组织进行实时分析,无需提取ISF或病变组织。从临床角度来看,简化了生物化验过程,缩短得出结果时间。因此,微针生物传感器已在疾病诊断和健康监测中得到应用,为实时监测身体状况或快速检测病变组织提供一种可穿戴、微创的选择。

图6 用于生物传感的3D打印微针

综上所述,该论文介绍了用于制造微针的3D打印技术,分析了每种方法的优点和局限性,并深入探讨3D打印微针的当前和新兴应用。3D打印的优势包括高分辨率、高可定制性、与生物材料的兼容性以及一步法的制造过程,这些优势使新型复杂微针的制造成为可能,并提高在各种生物医学应用中的效果。在临床环境中,透皮应用微针所面临的一个困难是,必须确保微针在完全溶解前一直插在皮肤中,微成型作为大规模制造微针最常用的方法,无法满足患者不同皮肤状况或体表轮廓。因此,3D打印将是更好的选择。除了透皮给药,3D打印微针还可用于向其他组织、器官和损伤部位非透皮给药。除小分子药物外,微针还可用于递送生物制品,尤其是大分子,从而为疫苗接种和治疗需要复杂疗法(如蛋白质、基因、药物和金属离子联合疗法)的复杂疾病提供可行的选择。除了递送,3D打印制造的微针还可用于皮肤组织活检或细胞应用。总之,在这些需要精确控制和改变穿透深度以及机械性能的高敏感领域,3D打印制造的微针将变得越来越有吸引力。3D打印技术在制造微针方面的应用尚处于起步阶段,大多数创新仍处于研究或临床前水平。但该技术具有传统方法无法实现的高度个体化、可定制性和高分辨率,未来有望促进治疗、诊断和医美领域的发展。

论文链接:
https://doi.org/10.1016/j.bioactmat.2023.09.022


延伸阅读:
《即时诊断应用的生物传感器技术及市场-2022版》
《给药应用的微针专利态势分析-2020版》
《3D打印材料技术及市场-2022版》
《金属增材制造(3D打印)技术及市场-2022版》
《聚合物增材制造(3D打印)技术及市场-2022版》
《3D电子及增材制造电子技术和市场-2022版》
《3D打印硬件技术和市场-2022版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 117浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 159浏览
  • 国际标准IPC 标准:IPC-A-600:规定了印刷电路板制造过程中的质量要求和验收标准,涵盖材料、外观、尺寸、焊接、表面处理等方面。IPC-2221/2222:IPC-2221 提供了用于设计印刷电路板的一般原则和要求,IPC-2222 则针对高可靠性电子产品的设计提供了进一步的指导。IPC-6012:详细定义了刚性基板和柔性基板的要求,包括材料、工艺、尺寸、层次结构、特征等。IPC-4101:定义了印刷电路板的基板材料的物理和电气特性。IPC-7351:提供了元件封装的设计规范,包括封装尺寸
    Jeffreyzhang123 2025-01-02 16:50 198浏览
  • 在科技飞速发展的今天,机器人已经逐渐深入到我们生活和工作的各个领域。从工业生产线上不知疲倦的机械臂,到探索未知环境的智能探测机器人,再到贴心陪伴的家用服务机器人,它们的身影无处不在。而在这些机器人的背后,C 语言作为一种强大且高效的编程语言,发挥着至关重要的作用。C 语言为何适合机器人编程C 语言诞生于 20 世纪 70 年代,凭借其简洁高效、可移植性强以及对硬件的直接操控能力,成为机器人编程领域的宠儿。机器人的运行环境往往对资源有着严格的限制,需要程序占用较少的内存和运行空间。C 语言具有出色
    Jeffreyzhang123 2025-01-02 16:26 153浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 155浏览
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 137浏览
  • Matter加持:新世代串流装置如何改变智能家居体验?随着现在智能家庭快速成长,串流装置(Streaming Device,以下简称Streaming Device)除了提供更卓越的影音体验,越来越多厂商开始推出支持Matter标准的串流产品,使其能作为智能家庭中枢,连结多种智能家电。消费者可以透过Matter的功能执行多样化功能,例如:开关灯、控制窗帘、对讲机开门,以及操作所有支持Matter的智能家电。此外,再搭配语音遥控器与语音助理,打造出一个更加智能、便捷的居家生活。支持Matter协议
    百佳泰测试实验室 2025-01-03 10:29 141浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 173浏览
  • 从无到有:智能手机的早期探索无线电话装置的诞生:1902 年,美国人内森・斯塔布菲尔德在肯塔基州制成了第一个无线电话装置,这是人类对 “手机” 技术最早的探索。第一部移动手机问世:1938 年,美国贝尔实验室为美国军方制成了世界上第一部 “移动” 手机。民用手机的出现:1973 年 4 月 3 日,摩托罗拉工程师马丁・库珀在纽约曼哈顿街头手持世界上第一台民用手机摩托罗拉 DynaTAC 8000X 的原型机,给竞争对手 AT&T 公司的朋友打了一个电话。这款手机重 2 磅,通话时间仅能支持半小时
    Jeffreyzhang123 2025-01-02 16:41 167浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 113浏览
  • 影像质量应用于多个不同领域,无论是在娱乐、医疗或工业应用中,高质量的影像都是决策的关键基础。清晰的影像不仅能提升观看体验,还能保证关键细节的准确传达,例如:在医学影像中,它对诊断结果有着直接的影响!不仅如此,影像质量还影响了:▶ 压缩技术▶ 存储需求▶ 传输效率随着技术进步,影像质量的标准不断提高,对于研究与开发领域,理解并提升影像质量已成为不可忽视的重要课题。在图像处理的过程中,硬件与软件除了各自扮演着不可或缺的基础角色,有效地协作能够确保图像处理过程既高效又具有优异的质量。软硬件各扮演了什么
    百佳泰测试实验室 2025-01-03 10:39 137浏览
  • 前言近年来,随着汽车工业的快速发展,尤其是新能源汽车与智能汽车领域的崛起,汽车安全标准和认证要求日益严格,应用范围愈加广泛。ISO 26262和ISO 21448作为两个重要的汽车安全标准,它们在“系统安全”中扮演的角色各自不同,但又有一定交集。在智能网联汽车的高级辅助驾驶系统(ADAS)应用中,理解这两个标准的区别及其相互关系,对于保障车辆的安全性至关重要。ISO 26262:汽车功能安全的基石如图2.1所示,ISO 26262对“功能安全”的定义解释为:不存在由于电子/电气系统失效引起的危害
    广电计量 2025-01-02 17:18 218浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 164浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 289浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦