适用于反射面场景的偏振结构光3D深度相机

MEMS 2023-11-01 00:03

摘要

高反射面,例如玻璃、镜子和水面,是深度传感和三维(3D)成像中的常见场景。它们通常会导致深度感知的严重错误,例如倒影、虚像导致错误的深度测量。目前主流的3D相机,例如传统的结构光相机、立体视觉相机、时间飞行(ToF)相机等,在这类场景中都存在着明显的不足。为了解决这些问题,博升光电团队设计了一种新型偏振结构光3D相机。在发射端,设计高对比度光栅(high-contrast-grating,HCG)垂直腔面发射激光器(vertical-cavity surface-emitting lasers,VCSELs)用于提供具有强偏振选择比的结构光。在接收端,设计了装有偏振片的红外CMOS相机来选择性地接收信号。经过各种测试,在各种成像条件下该偏振结构光相机都可以准确获取反射面场景的深度。

现状

近几十年来,如何让探测器正确识别反射面一直是技术难点。许多技术,例如偏振成像、主动发射式探测器和声纳的融合、深度学习等,都一直致力于反射面的探测。然而,由于反射或多径噪声的影响,大多数这些技术在实际场景中使用并不鲁棒和稳健。

偏振成像通过对不同偏振角度反射强度的多幅图像进行分析,可以得到物体的三维形状。它第一次用于确定反射表面的3D方向可以追溯到20世纪90年代。从那时起,偏振成像就开始被用于重建透明和镜面物体的形状。随后,偏振成像与各种深度传感器的结合,使其能够获得更好的重建效果。然而,偏振成像需要捕获多个偏振图像来估计相对深度,而且依赖于物体折射率的先验知识,并不适用于通用场景的深度探测。而且,基于图像的方法很容易受到物体反射倒影的影响,不能正确测量反射面的深度。

主动发射式的探测与成像,例如激光测距仪和结构光相机,在深度传感领域得到了广泛的应用。以激光测距仪为例,为了处理反射面,一些研究人员使用反射强度分布图来确定玻璃区域。激光测距仪与声纳、偏振成像的融合也用于玻璃环境下的机器人导航研究。然而,这些方法需要扫描多个角度以确定反射面深度,因此它们主要路径规划并不适用于反射面的3D成像。对于结构光相机,它们利用和声纳的融合来获取玻璃场景的深度图像。但是,由于声纳的数据稀疏、角度窄,需要多次扫描才能获得足够的信息。此外,与声纳的融合将会产生系统成本高、体积大、结构复杂等问题。

深度学习领域近些年也不断出现关于反射面检测的工作。他们使用大量反射面图像来训练网络模型,然后输入新的图像进行反射面区域识别。但这种方法也可能会把有框架或边界的区域,比如没有玻璃的空框架,误认为是反射面。因此,对于反射面环境的3D成像应用,仍然需要一种鲁棒的方法。

内容

据麦姆斯咨询报道,近期,博升光电团队开发出一种新型偏振结构光(PSL)3D相机,在发射器(TX)和接收器(RX)上都具有偏振特性(图1)。在TX中,高对比度光栅(HCG)垂直腔面发射激光器(VCSELs)是专门设计用于提供具有强偏振选择比的结构光。在RX中,设计了偏振选择CMOS相机来选择性地接收信号。根据菲涅耳理论,镜面反射与入射偏振光保持相同的偏振。然而,漫反射面的反射即使被强偏振光入射也不表现出任何偏振。因此,使用偏振选择CMOS相机可以区分反射面和其他物体,同时可以根据偏振方向的选择来获得反射面或其背后物体的深度信息(图1b)。另外,根据TX和RX的偏振组合,还可以过滤掉反射噪声的影响,获取清晰的场景深度信息(图1c)。本论文了进行了三个实验,以演示如何使用PSL 3D相机来实现看到以及看透反射面。


图1 偏振结构光3D传感器原理

看透反射面实验结果

首先,本论文以室内玻璃门场景,来说明PSL 3D相机看透反射面的能力。如图2所示PSL 3D相机正对玻璃门,距离从0.4 m到1.2 m不等。在玻璃门后面,有柜子和篮球。它们与玻璃的距离固定为0.5m。PSL 3D相机的TX向场景投射偏振光结构光。然后结构光被反射回RX,包含玻璃门和后方物体的深度信息。其中玻璃门的反射与TX保持相同的偏振,而柜子和篮球的反射光因漫反射而具有各种偏振方向。如图2a的偏振0°所示,当我们将RX设置为与TX偏振相同时,可以重构玻璃门、柜子和篮球的深度信息。如图2a的偏振90°所示,如果我们将RX旋转到正交方向,则可以过滤玻璃部分,留下柜子和篮球的深度信息。同时,也测试了0.8m和1.2m的情况,看到和看透玻璃的功能都可以实现。


图2 看透反射面实验结果

抗反射噪声成像实验结果

接着,本论文在室外和室内场景展示PSL 3D相机抗反射噪声成像的特点(图3)。首先展示室外玻璃场景(图3a),在这种情况下,自然光在反射面上有较强的镜面反射。从图中可以看到,反射噪声使立体视觉相机无法获得场景的深度。然而,该噪声具有较大的S偏振分量。因此,我们可以利用P偏振TX和RX来过滤这种噪声,提高信噪比。如图3c所示,在这种P偏振设置下,PSL 3D相机可以清晰地测量整个场景的深度。


图3 抗反射噪声成像实验结果

在室内场景,本论文分析了在墙角情况下的抗噪声检测能力。这种场景是室内服务机器人常见的场景。如图3d-3l所示,展示了在0.24m、0.4m和0.56m三种不同高度下,PSL 3D相机和传统立体视觉3D相机的对比结果。可以看到,在这种情况下,由于多径噪声的影响,立体视觉相机(图3e,3h,3k)会出现错误的深度判断。而对于PSL 3D相机(图3f,3i,3l),通过将TX和RX设置为P偏振,可以获得完整且正确的墙角深度和点云。

补全反射面实验结果

除了可以实现看透反射面和抗反射噪声,PSL 3D相机还可以进行反射面的补全。本论文选取了4个常见场景进行实验(图4),其中包括阳台玻璃、隔音室玻璃、球形玻璃和办公室门玻璃。每一列对应一个场景,首先在偏振度为0°和90°的情况下,取得两幅深度图像。在偏振度为0°的情况下,玻璃和其它漫反射部分都可以重构,而在偏振度为90°的情况下,玻璃部分被消除。相比于立体视觉相机无法检测到玻璃的深度,PSL 3D相机这种特别的变化可以作为确定反射面的可靠线索。因此,依靠第二第三行两幅深度图像的相减和第四行预测的玻璃边界,相机就可以提取出属于玻璃的深度,其结果展示在第五行。接着提取的玻璃点可以用来拟合和补全反射面。补全的深度图像显示在第七行,其中部分空的玻璃现在已被填充。最后两行显示了原始点云和补全点云的最终对比。在最后补全的点云中,反射面的3D重建结果正确,再次验证了PSL 3D相机的特别之处。


图4 补全反射面实验结果

总结

综上所述,博升光电团队发明了一种新型基于HCG-VCSEL的偏振结构光3D相机,并提出了相应的成像方法,用于反射面的各种场景的3D重建。作为机器人的眼睛,PSL 3D相机将在服务机器人和物流机器人等领域得到广泛应用。这些机器人将不可避免地遇到反射面的问题,例如报告实验中所示的玻璃门和瓷砖墙角等。PSL 3D相机可以使他们正确处理这些情况。此外,反射面物体或场景重建,例如办公室和展览馆等,也将受益于该方法。因此,凭借特殊的偏振特性,PSL 3D相机可以进一步扩展到广泛的室内和室外3D应用。

延伸阅读:
《激光雷达(LiDAR)技术及市场-2022版》
《汽车激光雷达(LiDAR)专利全景分析-2022版》
《VCSEL专利态势分析-2022版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 65浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 75浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 161浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 63浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 119浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 62浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦