高速数字电路设计通关五部曲(三):信号反射与端接技术

电子万花筒 2023-10-31 07:46
电子万花筒平台核心服务

 中国最活跃的射频微波天线雷达微信技术群

电子猎头:帮助电子工程师实现人生价值! 

电子元器件:价格比您现有供应商最少降低5%



信号反射的形成


传输线上的阻抗不连续会导致信号反射,我们以图1所示的理想传输线模型来分析与信号反射有关的重要参数。

图中,理想传输线L被内阻为R0的数字信号驱动源VS驱动,传输线的特性阻抗为Z0,负载阻抗为RL。

图1、理想传输线模型

理想的情况是当R0=Z0=RL时,传输线的阻抗是连续的,不会发生任何反射,能量一半消耗在源内阻R0上,另一半消耗在负载电阻RL上(传输线无直流损耗)。

如果负载阻抗大于传输线的特性阻抗,那么负载端多余的能量就会反射回源端,由于负载端没有吸收全部能量,故称这种情况为欠阻尼。

如果负载阻抗小于传输线的特性阻抗,负载试图消耗比当前源端提供的能量更多的能量,故通过反射来通知源端输送更多的能量,这种情况称为过阻尼。

欠阻尼和过阻尼都会引起反向传播的波形,某些情况下在传输线上会形成驻波。当Z0=RL时,负载完全吸收到达的能量,没有任何信号反射回源端,这种情况称为临界阻尼。

从系统设计的角度来看,由于临界阻尼情况很难满足,所以最可靠适用的方式轻微的过阻尼,因为这种情况没有能量反射回源端。

负载端阻抗与传输线阻抗不匹配会在负载端(B点)反射一部分信号回源端(A点),反射电压信号的幅值由负载反射系数ρL决定,见下式:

式中,ρL称为负载电压反射系数,它实际上是反射电压与入射电压之比。

由式(1)可见,-1≤ρL≤+1,且当RL=Z0时,ρL=0,这时就不会发生反射。即,只要根据传输线的特性阻抗进行终端匹配,就能消除反射。

从原理上说,反射波的幅度可以大到入射电压的幅度,极性可正可负。当RLZ0时,ρL>0,处于欠阻尼状态,反射波极性为正。

当从负载端反射回的电压到达源端时,又将再次反射回负载端,形成二次反射波,此时反射电压的幅值由源反射系数ρS决定,见下式:


阻抗匹配与端接方案


1

典型的传输线端接策略

由以上分析可知,在高速数字系统中,传输线上阻抗不匹配会引起信号反射,减小和消除反射的方法是根据传输线的特性阻抗在其发送端或接收端进行终端阻抗匹配,从而使源反射系数或负载反射系数为零。

传输线的长度符合下式的条件应使用端接技术。

式中,L为传输线线长,tr为源端信号的上升时间,tpdL为传输线上每单位长度的带载传输延迟。即当tr小于2TD时,源端完整的电平转移将发生在从传输线的接收端反射回源端的反射波到达源端之前,这时需要使用端接匹配技术,否则会在传输线上引起振铃。

传输线的端接通常采用两种策略:

(1)使负载阻抗与传输线阻抗匹配,即并行端接;

(2)使源阻抗与传输线阻抗匹配,即串行端接。即如果负载反射系数或源反射系数二者任一为零,反射将被消除。

从系统设计的角度,应首选策略1,因其是在信号能量反射回源端之前在负载端消除反射,即使ρL=0,因而消除一次反射,这样可以减小噪声、电磁干扰(EMI)及射频干扰(RFI)。

而策略2则是在源端消除由负载端反射回来的信号,即使ρS=0和ρL=1(负载端不加任何匹配),只是消除二次反射,在发生电平转移时,源端会出现持续时间为2TD的半波波形,不过由于策略2实现简单方便,在许多应用中也被广泛采用。

两种端接策略各有其优缺点,以下就简要介绍这两类主要的端接方案。

1.1、并行端接

并行端接主要是在尽量靠近负载端的位置加上拉和/或下拉阻抗以实现终端的阻抗匹配,根据不同的应用环境,并行端接又可分为以下几种类型:

1)简单的并行端接

图2、简单的并行端接

这种端接方式是简单地在负载端加入一下拉到GROUND的电阻RT(RT=Z0)来实现匹配,如图2所示。

采用此端接的条件是驱动端必须能够提供输出高电平时的驱动电流以保证通过端接电阻的高电平电压满足门限电压要求。

在输出为高电平状态时,这种并行端接电路消耗的电流过大,对于50Ω的端接负载,维持TTL高电平消耗电流高达48mA,因此一般器件很难可靠地支持这种端接电路。

2)戴维宁(Thevenin)并行端接

图3、戴维宁(Thevenin)并行端接

戴维宁(Thevenin)端接即分压器型端接,如图3示。它采用上拉电阻R1和下拉电阻R2构成端接电阻,通过R1和R2吸收反射。R1和R2阻值的选取由下面的条件决定。

R1的最大值由可接受的信号的最大上升时间(是RC充放电时间常数的函数)决定,R1的最小值由驱动源的吸电流数值决定。R2的选择应满足当传输线断开时电路逻辑高电平的要求。

戴维宁等效阻抗可表示为:

这里要求RT等于传输线阻抗Z0以达到最佳匹配。此端接方案虽然降低了对源端器件驱动能力的要求,但却由于在VCC和GROUND之间连接的电阻R1和R2从而一直在从系统电源吸收电流,因此直流功耗较大。

3)主动并行端接

图4、主动并行端接

在此端接策略中,端接电阻RT(RT=Z0)将负载端信号拉至一偏移电压VBIAS,如图4所示。

VBIAS的选择依据是使输出驱动源能够对高低电平信号有汲取电流能力。这种端接方式需要一个具有吸、灌电流能力的独立的电压源来满足输出电压的跳变速度的要求。

在此端接方案中,如偏移电压VBIAS为正电压,输入为逻辑低电平时有DC直流功率损耗,如偏移电压VBIAS为副电压,则输入为逻辑高电平时有直流功率损耗。

4)并行AC端接

图5、并行AC端接

如图5所示,并行AC端接使用电阻和电容网络(串联RC)作为端接阻抗。

端接电阻R要小于等于传输线阻抗Z0,电容C必须大于100pF,推荐使用0.1uF的多层陶瓷电容。

电容有阻低频通高频的作用,因此电阻R不是驱动源的直流负载,故这种端接方式无任何直流功耗。

5)二极管并行端接

某些情况可以使用肖特基二极管或快速开关硅管进行传输线端接,条件是二极管的开关速度必须至少比信号上升时间快4倍以上。

在面包板和底板等线阻抗不好确定的情况下,使用二极管端接即方便又省时。如果在系统调试时发现振铃问题,可以很容易地加入二极管来消除。

图6、肖特基二极管端接

典型的二极管端接如图6所示。肖特基二极管的低正向电压降Vf(典型0.3到0.45V)将输入信号钳位到GROUND-Vf和VCC+Vf之间。

这样就显著减小了信号的过冲(正尖峰)和下冲(负尖峰)。在某些应用中也可只用一个二极管。

二极管端接的优点在于:二极管替换了需要电阻和电容元件的戴维宁端接或RC端接,通过二极管钳位减小过冲与下冲,不需要进行线的阻抗匹配。

尽管二极管的价格要高于电阻,但系统整体的布局布线开销也许会减少,因为不再需要考虑精确控制传输线的阻抗匹配。

二极管端接的缺点在于:二极管的开关速度一般很难做到很快,因此对于较高速的系统不适用。

1.2、串行端接

串行端接是通过在尽量靠近源端的位置串行插入一个电阻RS(典型10Ω到75Ω)到传输线中来实现的,如图7所示。

串行端接是匹配信号源的阻抗,所插入的串行电阻阻值加上驱动源的输出阻抗应大于等于传输线阻抗(轻微过阻尼)。即:

图7、串行端接

这种策略通过使源端反射系数为零从而抑制从负载反射回来的信号(负载端输入高阻,不吸收能量)再从源端反射回负载端。

串行端接的优点在于:每条线只需要一个端接电阻,无需与电源相连接,消耗功率小。当驱动高容性负载时可提供限流作用,这种限流作用可以帮助减小地弹噪声。

串行端接的缺点在于:当信号逻辑转换时,由于RS的分压作用,在源端会出现半波幅度的信号,这种半波幅度的信号沿传输线传播至负载端,又从负载端反射回源端,持续时间为2TD(TD为信号源端到终端的传输延迟),这意味着沿传输线不能加入其它的信号输入端,因为在上述2TD时间内会出现不正确的逻辑态。

并且由于在信号通路上加接了元件,增加了RC时间常数从而减缓了负载端信号的上升时间,因而不适合用于高频信号通路(如高速时钟等)。


2

多负载的端接策略

在实际电路中常常会遇到单一驱动源驱动多个负载的情况,这时需要根据负载情况及电路的布线拓扑结构来确定端接方式和使用端接的数量。一般情况下可以考虑以下两种方案。

2.1、近距离多负载端接

如果多个负载之间的距离较近,可通过一条传输线与驱动端连接,负载都位于这条传输线的终端,这时只需要一个端接电路。如采用串行端接,则在传输线源端加入一串行电阻即可,如图8a所示。

如采用并行端接(以简单并行端接为例),则端接应置于离源端距离最远的负载处,同时,线网的拓扑结构应优先采用菊花链的连接方式,如图8b所示。

图8、近距离多负载端接

2.2、远距离多负载端接

如果多个负载之间的距离较远,需要通过多条传输线与驱动端连接,这时每个负载都需要一个端接电路。

如采用串行端接,则在传输线源端每条传输线上均加入一串行电阻,如图9a所示。

如采用并行端接(以简单并行端接为例),则应在每一负载处都进行端接,如图9b所示。

图9、远距离多负载端接


3

不同工艺器件的端接策略

阻抗匹配与端接技术方案随着互联长度和电路中逻辑器件的家族在不同也会有所不同,只有针对具体情况,使用正确适当的端接方法才能有效地减小信号反射。

一般来说,对于一个CMOS工艺的驱动源,其输出阻抗值较稳定且接近传输线的阻抗值,因此对于CMOS器件使用串行端接技术就会获得较好的效果。

而TTL工艺的驱动源在输出逻辑高电平和低电平时其输出阻抗有所不同,这时,使用并行戴维宁端接方案则是一种较好的策略。ECL器件一般都具有很低的输出阻抗。

因此,在ECL电路的接收端使用一下拉端接电阻(下拉电平需要根据实际情况选取)来吸收能量则是ECL电路的通用端接技术。

当然,上述方法也不是绝对的,具体电路上的差别、网络拓扑结构的选取、接收端的负载数等都是可以影响端接策略的因素。

因此在高速电路中实施电路的端接方案时,需要根据具体情况通过分析仿真来选取合适的端接方案以获得最佳的端接效果。

欢迎射频微波雷达通信工程师关注公众号

中国最纯粹的射频微波雷达通信工程师微信技术群,欢迎您的加入,来这里一起交流和讨论技术吧!进群记得备注方向和公司名称哦,我们将邀请您进细分群!

用手指按住就可以加入微信技术群哦!

电子万花筒平台自营:Xilinx ALTERA ADI TI ST NXP 镁光 三星 海力士内存芯片 等百余品牌的电子元器件,可接受BOM清单,缺料,冷门,停产,以及国外对华禁运器件业务!


欢迎大家有需求随时发型号清单,我们将在第一时间给您呈上最好的报价,微信(QQ同号):1051197468


与我们合作,您的器件采购成本将相比原有供应商降低5%以上!!不信?那您就来试试吧!!欢迎来撩!!


电子万花筒 电子万花筒,每个电子工程师都在关注的综合型技术与行业服务平台!
评论
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 47浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 49浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 81浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 68浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 73浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 77浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦