Linux内存管理宏观篇(一):不同角度去看内存(硬件)

Linux阅码场 2023-10-30 08:02

1、硬件角度

大家都曾经看过那个纸上打孔,记录数据的图片。

后来都知道出现了内存器,我们执行指令分为加载+运行。

最开始的程序运行时只能跑一个进程的,那就不需要复杂的内存管理,把我弄到固定的位置,然后这片区域都是我的。而且有多大的内存我就用多大的,一旦我进程想用的内存比拥有的物理内存大的时候,崩了就完事了。

特点:单进程 单操作系统 直接使用物理内存

这样的问题随着时代的发展问题就来了。

问题一 :单进程用不完资源那不是浪费?

问题二 :我要是物理内存不够,又没钱升级硬件怎么办?

问题三 :因为我的软件直接操作接触的物理内存,这个和硬件靠的太近,我们都知道移植性就查了?

随着发展单进程肯定是不符合要求的,那么怎么办?多进程(脑子里先把进程调度的事情放下,focu内存方面)。

多进程之间的这个内存怎么处理,总不能让腾讯的数据访问到快播的吧,想象你正在看剧,突然内容变成了学习内容,怕怕。为了解决这个问题,在操作系统编译的时候主存划分了很多的静态分区。有进程的时候,你就看看哪里能放下你,你去那里待着。


于是问题又来了

1、程序大小那不是必须和分区匹配,起码不能比分区小

2、这个进程的数目那就是固定了啊,那不是买电脑还得多一个电脑能跑多少个进程的参数

3、地址空间固定,进程不能膨胀啊。(想想咱们平时LOL,不运行的时候几个G,运行起来几百个,那肯肯定是玩不了了)

4、进程之间的边界真的能控制的很好吗?现在这么完备的内存管理下还经常出现内存踩踏时间。

解决方法就是前辈们整了个动态的分区,就是给操作系统整一个分区,剩下的有进程时,需要多大分割多大。这样一整,敏感的你就知道了,分割多了,那不是内存的这个空洞就多了,碎片就多了,那咋整呢。得规整内存,只能迁移进程了,迁移进程你不可能做,只能操作系统了,而这个过程很消耗时间(自己磁盘整理过的都知道哈),需要大量数据的换入换出。尤其是在进程运行的时候内存不够了,然后你得去迁移,等个一个小时,电脑我都想砸了。

迁移只有这个进程的位置也变了,这个寻址方式就算是相对寻址,那个相对的对象总是绝对的,因此程序编写你就说头疼不。(两数之和已经够头疼了,还有心情去管理内存重定位)

同时当这个程序是恶意的,那我不是就可以为所欲为,因为大家都是直接对应的物理内存,我偏不去我该去的地方,我就在你工作的时候来骚扰你一下,你就说怕不怕。

于是这几个问题:

内存保护、内存运行重定位、使用效率低下无法忍受懒惰是催促科技进步的源动力

1、解决办法 level1 - 分段机制

为了解决进程间内存保护的问题,提出了虚拟内存。通过增加一层虚拟内存,进程访问虚拟内存,虚拟内存由操作系统映射到物理内存。对于进程来说它就不需要关系实际的物理地址,当访问到没有映射的物理内存时,操作系统会捕捉到这个微法操作。同时进程是使用的虚拟内存,因为程序也具有移植性但是啊进程就算是操作虚拟内存但是最后也是映射到物理内存,如果给进程映射的物理内存不够的时候,那还是得迁移。换出到磁盘进行迁移,粒度是整个进程,这么大的io肯定很漫长。想想一个程序中的数据,在不断的运行使用的只有那么一部分,于是把常用的放在内存,不常用的放在磁盘中。那么换入换出的就是那么一少部分数据。然后这里就创建了更细的粒度–分页机制想想为什么你的电脑内存条才8个G却能跑几十G的游戏。

2、解决办法 level2 - 分页机制

现在我们知道分页粒度很细。进程的虚拟地址、硬件的物理地址都按照分页的粒度。常用的代码和数据以页留在内存,不常用的去磁盘,这样就节省了物理内存(内存那么贵)进程的虚拟内存页通过CPU的硬件单元映射到物理内存页物理页称为物理页面或者页帧进程空间的虚拟页面称为虚拟页操作系统为了管控这些物理页面,给页帧创建了编号页帧号 PFN现在的页表常见的4KB最常见,还有16K、64K。在某些特点的场景下,比如那种超大服务器系统TB量级,可能页面是M或者G级别。

到这里就说说那个CPU的硬件单元

其实虽然什么不想做的事情都扔给操作系统,但是做人不能这么狗,尤其是内存管理这么严重的事情,还有就是安全性(我这样认为),于是用过CPU的硬件单元–MMU来管控这个内存的映射。

ARM处理器的内存管理单元包括TLB和Table Walk Unit两个部件。

TLB是一块高速缓存,用于缓存页表转换的结果,从而减少内存访问的时间。就拿缓存的概念去理解。当TLB 没有,miss了。那我就只能去内存的转换页表中获取这个映射的结果,获取到对应的物理地址后再将我的虚拟地址换成物理地址去最终的目的地查看学习资料。(有没有中玩游戏闯关的感觉)


当然不是说有个这个玩意就什么不用做了。

一个完整的页表翻译和查找的过程叫作页表查询(Translation Table Walk),页表查询的过程由硬件自动完成,但是页表的维护需要软件来完成。


页表查询是一个相对耗时的过程,理想的状态是TLB里缓存有页表转换的相关信息。当TLB未命中时,才会去查询页表,并且开始读入页表的内容。(要是这个TLB整大点,不是可以加快,不考虑钱的话)


因此页表的维护是软件的,所以在Linux内核内存的学习中,后面会有内存初始化,创建页表这些东西。


3、虚拟内存到物理地址的转换

上面那个图里面,如果是TLBs命中后就直接拿到了物理地址,去兑换奖品,但是miss掉以后,那就得走Table Walk Uint就是得页表转换,VA–>PA(V:虚拟 P:物理 A:地址)

整个流程瞅瞅?

处理器根据页表基地址控制寄存器TTBCR和虚拟地址来判断使用哪个页表基地址寄存器,是TTBR0还是TTBR1。(一个基值是内核的,一个用户态的)

页表基地址寄存器中存放着一级页表的基地址。

处理器根据虚拟地址的bit[31:20]作为索引值()4K页表,在一级页表中找到页表项。一级页表一共有4 096个页表项。

第一级页表的表项中存放有二级页表的物理基地址。处理器将虚拟地址的 bit[19:12]作为索引值,在二级页表中找到相应的页表项。二级页表有256个页表项(2^12 * 2^8 * 4kb(2^12)==》32位)。

二级页表的页表项里存放有 4KB 页的物理基地址,加上最后的VA 12位,因此处理器就完成了页表的查询和翻译工作。

(将整个4MB分成了4096份* 256份*4KB)
(这就是为什么内存越大,页表项也得越大,不然页表项的内存就变大的)
(表项存的是基地址,而虚拟内存放的都是索引)

图 7.4 所示为 4KB 映射的一级页表的表项,bit[1:0]表示一个页映射的表项,bit[31:10]指向二级页表的物理基地址。


4KB是2^12


64位的ARM 一般常用的是48,那么只剩36位(其他的位干啥了呢,记住这个问题哈哈哈)


这里还是讨论32位

下图展示两个进程以及各自的页表和物理内存的对应关系图,这里假定页大小是4K,32位地址总线进程地址空间大小为(2^32)4G,这时候页表项有 4G / 4K = 1048576个,每个页表项为一个地址,占用4字节,1048576 * 4(B) /1024(M) = 4M,也就是说一个程序啥都不干,页表大小就得占用4M。如果每个页表项都存在对应的映射地址那也就算了,但是,绝大部分程序仅仅使用了几个页,也就是说,只需要几个页的映射就可以了,如下图,进程1的页表,只用到了0,1,1024三个页,剩下的1048573页表项是空的,这就造成了巨大的浪费,为了避免内存浪费,计算机系统开发人员想出了一个方案,多级页表。

我们先看下图,这是一个两级页表,对应上图中的进程1。先计算下两级页表的内存占用情况。

一级页表占用= 1024 * 4 B= 4K,

2级页表占用 = (1024 * 4 B) * 2 = 8K。

总共的占用情况是 12K,相比一级页表 4M,节省了99.7%的内存占用。


我们来看下两级页表为啥能够节省这么大的内存空间,相比于上图单级页表中一对一的关系,两级页表中的一级页表项是一对多的关系,这里是1:1024, 这样就需要 1048576 / 1024 = 1024 个一级页表项。相当于把上图的单级页表分成1024份。一级页表项PTE0表示虚拟地址页01023,PTE1表示虚拟地址页10242047。如果对应的1024个虚拟地址页存在任意一个真实的映射,则一级页表项指向一个二级页表项,二级页表项和虚拟地址页一一对应,在上图中,进程1的虚拟页0,1,1024存在映射,0,1虚拟页属于这里的PTE0,1024属于PTE1。一级页表项中如果为null,表示对应的1024个虚拟页没有使用,所以就不需要二级页表了,节省了空间。当然,如果虚拟地址页完全映射的话,多级页表的占用=一级页表项(1024 * 4B) + 二级页表项(1024 1024 4B) = 4M + 4K,比单级映射多了4K,不过这种情况基本上没有可能,因为进程的地址空间很少有完全映射的情况。正是因为省却了大量未映射的页表项使得页表的空间大幅减少。

其实这个差异就是我以前一来就把全部的虚拟页表和物理页表建立了映射关系,那我这个页表就需要4M。

现在我将这个4M的页表分成了1024份,需要几份就申请创建几份页表,而不是一来就把所有的页表都和物理页面挂上钩。

然后分成了这1024个,我需要在抽象一层4kb的页表去指向这1024个页表各自的基地址。

因为从物理内存层面一层一层的提到最上层的时候,也方便我们对于这个虚拟地址的组成:

一级页表索引+二级页表索引+VA(每次页表的内容都是下一基的基地址)

(这个图片稍微有点理想,一般都是4096 + 256的组合,而不是1014 + 1024的组合,不过大概这个道理就行)

那几个特殊的位是内存的属性。这个后面再补充。这个是ARM硬件架构上针对安全内存、设备内存的一些位。

参考资料:

内容参考来自《奔跑吧 linux内核》

https://blog.csdn.net/fuyuande/article/details/117616433

————————————————

版权声明:本文为CSDN博主「安全-Hkcoco」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/weixin_45264425/article/details/126438470


Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 98浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 167浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 102浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 168浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 70浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 41浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 126浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 37浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 83浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 66浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦