仪表放大器只有差模输入不工作的解释

原创 云深之无迹 2023-10-28 00:50

昨天写了一个又臭又长的文章:仪表放大器干翻了我。。。

在末尾看似回答了问题,但是有点模糊。

这个电路做分压抬升,也提供共模电压!!!缺后面这个话

这个电路的仿真是正确的,直流+信号,抬升了

昨天在INA前面加一个单纯的差模信号,后面没有反应,是因为输入范围不在INA的共模工作范围。

两个差分输入端都有这个,就是加了大的共模电压,然后送入放大器的就是抑制了共模,放大了差分。

我们看一个ECG芯片的输入端的设计,这个是2电极

也就是没有右腿放大电路,没有提供共模输入通路。

这个就是没有了,但是组成了RC的滤波器,因为有第三级的输入

也就是这样

这个图就是我看过最好的示意图!!!

TI这个也好

类比三运放的输入

输入级的分析

这个文章相当精彩,我有空写。就是分析噪音这段

这个也不错,共模就是说信号的任意一点和GND,或者是0V的差值,差模是相对的坐标系,互相参考,但是共模是全局的查看。

也就解释了一些线之间的电容是干啥用的,共模电容来抑制干扰信号。

差容就是直接连在一起

也就是信号出来了

村田有很好的文章,我就先偷个图,也说一下Y,X电容是什么

还有示波器探头的事情:

1.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被最大程度抵消。
2.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。
3.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS就是指这种小振幅差分信号技术。
差分信号的结构特点要求对应的测试设备也必须是差分拓扑,差分探头因此成为现代示波器的主流配件。下图是典型的有源差分探头电路结构图:

共模抑制比,简单来说,就是差动放大电路中对信号共模成分的抑制能力,其定义为放大器对差模信号的电压放大倍数Adm与对共模信号的电压放大倍数Acm之比,英文全称是CommonModeRejectionRatio,一般用简写CMRR来表示。

哪些因素会影响探头的共模抑制比呢?
电路对称性――电路的对称性决定了被放大后的信号残存共模干扰的幅度,电路对称性越差,其共模抑制比就越小,抑制共模信号(干扰)的能力也就越差。
信号频率或者Dv/Dt
任何探头或仪器输入的不匹配。
很显然,CMRR值越大越好,一般在60dB(1000:1)左右,但随着频率增加CMRR会逐渐减少。因为越快的信号边沿越容易再正负两端产生偏差,因而也会带来更多的共模电压,如下图所示。

嗯,看懂了

探头确实很贵

不过有开源的!!!

示意图

部分原理图

差分的输入电压

一点参数

喜欢,想做,等固件。

插一个电源的示意图

下面的解释都是超过,我没有超,我干脆没有。
当运放超出VICMR时,器件就可能不能做正常的线性运行。因此,必须了解输入信号的整个范围区间,确保运放不超出VICMR。
另一个混淆点是:VICM与VICMR是非标准的缩写,各家IC供应商的数据表中经常使用不同的术语,如VCM、VIC和VCMR。因此,必须清楚自己正在查看的规格,它不是一个特定的输入电压,而是一个输入电压的范围。
违反VICMR的情况一般出现在使用3.3V、5V或其它低电压应用的单电源运放中。在这些应用中,输入信号区间一般都是狭窄的,必须知道输入信号和VICMR,才能确保运放的正常运行。
首先,如果输入波幅过大,则要用一个电阻分压器,将信号保持在正确的VICMR区间内。
其次,如果输入信号的偏移有问题,则尝试使用一个输入偏置或直流偏移电路,使输入信号置于运放VICMR区间规格内。
第三,可以尝试换用一种能满足所有其它要求的轨至轨输入运放。

左边的图就是解释右边

最常见的共模应用

共模在电源上面

蓝色的就是共模电压

还是共模

看几个电路

前面有共模电压的输入端,也是可以调节直流分量,其次是双电源供电,,REF为0电位

这个是双电源的芯片

后面是低通

这个的话,我就以为是旁边共模电压是外部给的,而且也没有

参考电源

二阶低通滤波器是一种由 R.P Sallen 和E.L.Key. 在 1995 年给出的经典电路。这种滤波器实现了正的直流增益。在单电源环境下由于过程中无需提供参考电压,这样极大地简化了实现过程。本电路不仅可    滤除高频噪声,还可用来放大输入信号。

C2 跨接电桥输出端,以便 C2 有效地与 C1a 和 C1b 的串联组合并联。通过这样连接,C2 非常有效地减小了由于不匹配造成的任何 AC CMR 误差。例如,如果 C2 比 C1 大 10 倍,则它能将由于 C1a/C1b 不匹配造成的CMR 误差降低20倍。注意,该滤波器不影响 DC CMR。
RFI 滤波器有两种不同的带宽:差分带宽和共模带宽。差分带宽定义为当在电路的两个输入端(+IN 和-IN)之间施加差分输入信号时的滤波器频率响应。该 RC 时间常数由两个阻值相等的输入电阻器(R1a,R1b)之和,以及与 C1a 和 C1b 的串联组合并联的差分电容器 C2 一起决定。

差分带宽

共模带宽定义为连接在一起的两个输入与地之间出现的共模 RF 信号。认识到 C2 不影响共模 RF信号的带宽很重要,因为这个电容器是连接在两个
输入端之间的(有助于使它们保持在相同的 RF 信号幅度)。因此,共模带宽由两个 RC 网络(R1a/C1a和 R1b/C1b)对地的并联阻抗决定。

共模带宽

电阻器 R1 和 R2 可以采用普通的 1%金属薄膜电阻器。但是,所有三个电容器都需要采用高 Q 值、低损耗的电容器。电容器 C1a 和C1b 需要采用±5%允许偏差的电容器,以避免降低电路的 CMR。
差分输入滤波器的截止频率必须设置为大于共模滤波器截止频率的20倍,以防止共模噪声被转换为差分信号。
这些截止频率是通过将差动电容器的尺寸定为共模电容器尺寸的10倍来实现的。

这个热电偶的传感器,特性和我使用的差不多,这里也写一写。

我们看左下脚

这个是共模电压

还有仿真图

共模电压共模电压为2.6 V,以允许仪表放大器的输出从250 mV摆动到5 V。共模电压通过分压器设置,分压器使用来自REF02的5v电源,电阻R和电阻Rg。电阻R和Rg分别为15.0 kΩ和16.2 kΩ。电阻R和Rg的容差为0.1%,以减少与共模电压相关的误差。

图显示了共模电压为2.6 V时INA188的共模与输出电压的关系图。在共模电压为2.6 V的情况下,INA188的输出摆幅为220 mV至9.37 V。

发现了一个TI的精密信号链设计的PPT,感觉写的好好

INA121U

后面是实战的内容了

https://www.cnblogs.com/huanzxj/p/5664456.html
https://www.run-ic.com/article/554/12.html
https://www.ti.com.cn/general/cn/docs/gencontent.tsp?contentId=144527

评论
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 40浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 167浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 83浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 63浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 66浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 103浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 113浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦