本文是关于相位噪声建模、仿真和传播在锁相环中的应用的第三部分。
相位噪声对于锁相环的性能和输出是一个重要问题。
通过分析示例合成器,展示了如何利用相位噪声分析程序和传递函数来降低锁相环的输出相位噪声。
如第1部分和第2部分所述,锁相环 (PLL) 在当今的高科技世界中无处不在。几乎所有商业和军用产品都在其运行中使用它们,并且相位(或 PM)噪声是一个主要问题。频率(或 FM)噪声密切相关(瞬时频率是相位的时间导数),并且通常被认为是在相位噪声的范畴内(也许两者都可以被视为“角度噪声”)。幅度(或 AM)噪声是另一个考虑因素。
虽然两者都会影响 PLL 性能,但幅度噪声通常是自限性的,不会产生任何后果。因此,PLL 输出和 RF 组件的相位噪声是主要问题。当然,输出相位噪声是最终关注的问题,并且很大程度上取决于每个组件的相位噪声。造成组件相位噪声的因素有很多,例如电源、EMI 和半导体异常等,了解这些因素使我们能够实施组件相位噪声的缓解策略,并最终实现输出相位噪声的缓解策略。
在第 3 部分中,我们分析示例假设的合成器以演示所提出的概念和方法。
我们使用相位噪声分析程序和特定 PLL 框图和相位噪声传播模型 (图 8,第 2 部分)进行分析,在五个输出上完成:8-9-10-11-12 GHz。
对于之前使用该过程的步骤 1 到 6 开发的所有射频组件相位噪声模型,我们现在使用步骤 7(请参阅第 2 部分)并将所有组件相位噪声模型乘以其适用的(输出或误差)传递函数幅值平方给出他们的传播相位噪声模型。除了开环、输出和误差传递函数(下面讨论)之外,还对模型进行了仿真(图 9)。
然后,我们使用该过程的步骤 8(请参阅上面的链接)并添加所有组件的传播相位噪声模型以给出输出相位噪声模型,该模型在图 10 中进行了模拟。
A. 开环传递函数,T ol(8-9-10-11-12 GHz 输出)
参考图 8,通过标准框图分析,我们得到开环传递函数 T ol(在 8-9-10-11-12 GHz 输出):
模拟图 9中 TdB ol (f)的五种情况(选择 K Φ、 K v、 N适用于 8-9-10-11-12 GHz 输出)。
B. 通过输出传递函数 T rc传播的分量(在 8-9-10-11-12 GHz 输出)
再次参考图 8,我们得到输出传递函数,同样来自标准框图分析,有源低通滤波器 T rc(在 8-9-10-11-12 GHz 输出):
模拟图 9中 TdB rc (f)的五种情况(选择 K Φ、 K v、N 表示 8-9-10-11-12 GHz 输出)。
然后,再次参考图 8 ,我们将上述分析应用于适用组件(基准、基准分频器、反馈分频器、预分频器和相位检测器)相位噪声模型,表示为L ci。这些由 T rc进行处理,以找到这些组件的传播相位噪声模型,用 L co表示,如图 9所示:1,4,5
模拟图 9中 LdB co (f)的五种情况(为 8-9-10-11-12 GHz 输出选择 K Φ、 K v 、 N )。
C. 通过误差传递函数 T vc传播的分量(在 8-9-10-11-12 GHz 输出)
再次参考图 8 ,我们得到了误差传递函数,它再次来自标准框图分析,即有源高通滤波器 T vc(在 8-9-10-11-12 GHz 输出):
模拟图 9中 TdB vc (f)的五种情况(为 8-9-10-11-12 GHz 输出选择K f、K v、N )。
然后,最后一次参考图 8 ,我们将上述分析应用于单个适用组件 (VCO) 相位噪声模型 L vi (在 11.3 GHz 时从 L 11.3缩放到 8-9-10-11-12 GHz)数据表上给出)。它由 T vc处理以找到该组件的传播相位噪声模型 L vo,该模型在图 9中进行了仿真:1,4,5
模拟图 9中 LdB vo (f)的五种情况(为 8-9-10-11-12 GHz 输出选择 q、K Φ、K v 、N)。
D. 输出相位噪声(8-9-10-11-12 GHz 输出)
现在,我们完成上述分析,并添加由 T rc处理的分量传播相位噪声模型(由L co表示)和由 T vc处理的单分量传播相位噪声模型(由 L vo表示)。这将给出输出相位噪声模型 L to,该模型在图 10中进行了仿真:
模图 10中 LdB至(f)的五种情况(为 8-9-10-11-12 GHz 输出选择 K Φ、K v、N )。
因此,相位噪声分析(建模、仿真和传播)是完整的,并且直观上看起来是合理的。从模拟中可以明显看出以下几点:
在从 ~1 Hz 到 ~10 Hz 的近距离区域中,参考值及其一阶和高阶闪烁贡献是清晰的。
VCO 在约 100 kHz 至 > 100 MHz 的远处区域是清晰的,也具有一阶和高阶闪烁贡献。
其他分量在 ~10 Hz 至 ~100 kHz 的中间区域清晰可见,具有本底(0阶)贡献和一阶闪烁贡献。
对于大多数情况来说,这代表了相当标准的配置文件。
如前所述,最佳相位噪声通常是通过选择中频输出的 VCO 和基准相位噪声曲线相交处的环路带宽来实现的。然而,在某些需要对参考相位噪声进行更多抑制的情况下,可以使环路带宽更窄以实现这一点,但随之而来的是 VCO 和基底噪声的增加。当然,如果需要更多地抑制 VCO 相位噪声,可以加宽环路带宽来实现此目的,但会随之增加参考噪声和基底噪声。总是需要进行权衡。
我们展示了如何对一般相位噪声进行建模和仿真,以及 RF 分量相位噪声如何通过 PLL 传播以确定其输出相位噪声。我们首先讨论了相位噪声的一些简要理论和典型测量。然后我们讨论了相位噪声的分析,并介绍了我们的相位噪声分析程序,其中详细展示了大多数 CAD 应用程序使用的分析方法。
最后,我们通过设计和分析假设的单环路 8 至 12 GHz 输出/50 MHz 步进整数 PLL 频率合成器来演示所提出的概念和方法。它通过在 10 GHz 中频带输出处实现最低相位噪声,在整个频带内产生最低的平均输出相位噪声。
对于我们的示例合成器,我们选择了组件并开发了它们的相位噪声模型(即射频组件的)。然后使用其适用的传递函数(输出或误差)将分量相位噪声模型传播通过合成器(即PLL)以获得其传播的相位噪声模型。然后将分量传播的相位噪声模型相加,得到输出相位噪声模型。所有模型均经过仿真以显示其相位噪声曲线。我们对 8-9-10-11-12 GHz 五个输出进行了分析,结果直观上似乎是合理的。
我们还利用了 MATLAB 先进的计算能力。未来可能的努力可能包括考虑更复杂的因素(例如具有相关相位噪声的组件和/或影响输出相位噪声的其他微妙现象的组件)的类似分析。
1. FM Gardner,“锁相技术”,第 3版,John Wiley,新泽西州霍博肯,2005 年。
2. RE Best,“锁相环、设计、仿真和应用”,第 6版,McGraw-Hill,纽约州纽约市,2007 年。
3. PV Brennan,“锁相环:原理与实践”,McGraw-Hill,纽约,1996 年。
4. E. Drucker,“无线工程师的锁相环和频率合成”,1997 年,频率合成和锁相环设计,3 天短期课程,Besser Associates,山景城,加利福尼亚州,1999 年。
5. FC Weist,“频率合成器应用的锁相环基础知识”,短期课程,马里兰州克拉克斯堡,2011 年。
11月09日-10日将在上海举办一期SerDes课程,本期短期课程旨在通过提供 SerDes 空间所需的系统级和电路级概念来弥补这些差距。课程将从传统的模拟架构开始,逐步发展到今天基于 DSP 的均衡和定时恢复。本课程从传统的模拟混合信号 SerDes 架构开始,该架构如今仍适用于 UCI、HBM 和 XSR 解决方案。之后,我们将转向 ADC-DSP 解决方案。
--点击图片即转至课程页面
今天小编带来了:ISSCC2023套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。
1、深入理解SerDes(Serializer-Deserializer)之一
2、深入理解SerDes(Serializer-Deserializer)之二
3、科普:深入理解SerDes(Serializer-Deserializer)之三
4、资深工程师的ESD设计经验分享
5、干货分享,ESD防护方法及设计要点!
6、科普来了,一篇看懂ESD(静电保护)原理和设计!
7、锁相环(PLL)基本原理 及常见构建模块
8、当锁相环无法锁定时,该怎么处理的呢?
9、高性能FPGA中的高速SERDES接口
10、什么是毫米波技术?它与其他低频技术相比有何特点?
11、如何根据数据表规格算出锁相环(PLL)中的相位噪声
12、了解模数转换器(ADC):解密分辨率和采样率
13、究竟什么是锁相环(PLL)
14、如何模拟一个锁相环
15、了解锁相环(PLL)瞬态响应
16、如何优化锁相环(PLL)的瞬态响应
17、如何设计和仿真一个优化的锁相环
18、锁相环(PLL) 倍频:瞬态响应和频率合成
19、了解SAR ADC
20、了解 Delta-Sigma ADC
21、什么是数字 IC 设计?
22、什么是模拟 IC 设计?
23、什么是射频集成电路设计?
24、学习射频设计:选择合适的射频收发器 IC
25、连续时间 Sigma-Delta ADC:“无混叠”ADC
26、了解电压基准 IC 的噪声性能
27、数字还是模拟?I和Q的合并和分离应该怎么做?
28、良好通信链路性能的要求:IQ 调制和解调
29、如何为系统仿真建模数据转换器?
30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)
31、使用有效位数 (ENOB) 对 ADC 进行建模
32、以太网供电 (PoE) 的保护建议
33、保护高速接口的设计技巧
34、保护低速接口和电源电路设计技巧
35、使用互调多项式和有效位数对 ADC 进行建模
36、向 ADC 模型和 DAC 建模添加低通滤波器
37、揭秘芯片的内部设计原理和结构
38、Delta-Sigma ADCs中的噪声简介(一)
39、Delta-Sigma ADCs中的噪声简介(二)
40、Delta-Sigma ADCs 中的噪声简介(三)
41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)
42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)
43、放大器噪声对 Delta-Sigma ADCs 的影响(一)
44、放大器噪声对 Delta-Sigma ADCs 的影响(二)
45、参考电压噪声如何影响 Delta Sigma ADCs
46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声
47、时钟信号如何影响精密ADC
48、了解电源噪声如何影响 Delta-Sigma ADCs
49、运算放大器简介和特性
50、使用 Delta-Sigma ADCs 降低电源噪声的影响
51、如何设计带有运算放大器的精密电流泵
52、锁定放大器的基本原理
53、了解锁定放大器的类型和相关的噪声源
54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术
55、干货!《实用的RFIC技术》课程讲义
56、如何在您的下一个 PCB 设计中消除反射噪声
57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!
58、帮助你了解 SerDes!
1、免费公开课:ISCAS 2015 :The Future of Radios_ Behzad Razavi
2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)
3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)
4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs
5、免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)
6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)
7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动
8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi
9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块
10、免费公开课:ISSCC2020-小数N分频数字锁相环设计
11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)
12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础
13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础
14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)
15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)
16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe)
17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)
点击下方“公众号”,关注更多精彩
半导体人才招聘服务平台