我搞了十几年嵌入式,才发现全局变量是这样初始化的

原创 嵌入式软件实战派 2023-10-27 08:27
最近,有个好学的小伙子突然问了我一个问题:
全局变量的初始值,是在哪里赋值的?
这个问题虽然说不是很重要,但是我很好奇。
为了给讲清楚这个原理过程,我专门建立一个基于Renesas RH850的简单工程,挖一挖里面的技术细节。
我在main.c文件中定义了随便这几个变量
int counter, accumulator = 0, limit_value = 1000000;unsigned char str_aa55[2] = {0xAA,0x55};unsigned int int_1122334455667788 = 0x11223344;unsigned int int_55667788 = 0x55667788;int bss_val;void main(void){    }
然后,直接仿真查看,跟你我想的一样,在main函数之前就初始化完成了,即这些变量都自动初始化赋值了。
让人好奇的是,它是怎么做到的?
单片机的启动程序一般都是很简单的,即使汇编也没多少行,直接翻出来看看也许会知道答案。
  -- Clear local RAM  mov ___ghs_ramstart, r6  -- start of local RAM  mov ___ghs_ramend, r7    -- end of local RAM  mov r0, r11:  st.dw   r0, 0[r6]  addi    8, r6, r6  cmp r7, r6  bl 1b  -- Jump to the HW initialisation function  jarl  ___lowinit, lp  -- Jump to the initialisation functions of the library  -- and from there to main()  jr __start
以上这段汇编,根据旁边的注释其实很容易理解,前半部分就是将内存Local RAM初始化清零,即这段汇编可以见到梳理成
RAM清零--->执行___lowinit--->执行__start--->进入main函数
既然前面给RAM清零了,那么此时的全局变量应该全是0值吧,那可以推测,给全局变量赋初始值应该是在___lowinit__start了,但是这两个东西是编译环境里某个库的,暂时看不到源码。
但是,最终通过仿真查看变量值的方式,可以定位,给全局变量赋初始值是在__start里面。
此时,虽然我知道了它在哪里给全局变量初始化了,但是并不知道是怎样初始化的。
我还是很好奇,本着刨根问底的精神继续挖掘。
但是我在这个RH850的代码工程里面是找不到这个__start的源码内容的,仿真看汇编折腾了半天,突然想了下,为啥不换个其他工程试试,例如试试NXP S32K的?
于是,我创建了一个NXP S32K1xx的代码工程,仍然定义这几个变量
int counter, accumulator = 0, limit_value = 1000000;unsigned char str_aa55[2] = {0xAA,0x55};unsigned int  int_1122334455667788 = 0x11223344;unsigned int  int_55667788 = 0x55667788;int bss_val;
同样的讨论,直接翻启动文件的汇编代码
    /* Init .data and .bss sections */    ldr     r0,=init_data_bss    blx     r0
还是欧美的芯片简单粗暴,不像小日子做的初始化还有藏进库里。这不是很明显嘛,init_data_bss就是初始化全局变量的,以下截取了部分代码,也很容易理解。
void init_data_bss(void){    /* ...... */    /* Data */    data_ram        = (uint8_t *)__DATA_RAM;    data_rom        = (uint8_t *)__DATA_ROM;    data_rom_end    = (uint8_t *)__DATA_END;    /* ...... */    /* BSS */    bss_start       = (uint8_t *)__BSS_START;    bss_end         = (uint8_t *)__BSS_END;    /* ...... */        /* Copy initialized data from ROM to RAM */    while (data_rom_end != data_rom)    {        *data_ram = *data_rom;        data_ram++;        data_rom++;    }        /* ...... */    /* Clear the zero-initialized data section */    while(bss_end != bss_start)    {        *bss_start = 0;        bss_start++;    }    /* ...... */}

data段data_ram的初始化内容就是从data_rom来,而data_rom是从__DATA_ROM来。
那么,__DATA_ROM是什么东西,从哪里呢?
搜一搜工程里面的代码,很简单,这是从ld文件来

/* Specify the memory areas */MEMORY{  /* … */  /* SRAM_L */ m_data   (RW)  : ORIGIN = 0x1FFF8000, LENGTH = 0x00008000 m_data_2  (RW)  : ORIGIN = 0x20000000, LENGTH = 0x00007000
  /* … */ .data : AT(__DATA_ROM)  {    . = ALIGN(4);    __DATA_RAM = .;    __data_start__ = .;      /* Create a global symbol at data start. */    *(.data)                 /* .data sections */    *(.data*)                /* .data* sections */    . = ALIGN(4);    __data_end__ = .;        /* Define a global symbol at data end. */  } > m_data
  __DATA_END = __DATA_ROM + (__data_end__ - __data_start__);  __CODE_ROM = __DATA_END; /* Symbol is used by code initialization. */

  /* Uninitialized data section. */  .bss :  {    /* This is used by the startup in order to initialize the .bss section. */    . = ALIGN(4);    __BSS_START = .;    __bss_start__ = .;    *(.bss)    *(.bss*)    *(COMMON)    . = ALIGN(4);    __bss_end__ = .;    __BSS_END = .;  } > m_data_2
这里简单介绍下,带有初始化值(非0)全局变量(例如unsigned int  int_55667788 = 0x55667788;),都是定义在data段的,而未定义初始化值的全局变量,是分在bss段的(例如int bss_val;)。
到底是不是我说的这样子,直接查看map文件中的变量名和对应地址或段名就知道了
.data           0x1fff8400      0x42c load address 0x000009cc                0x1fff8400                . = ALIGN (0x4)                0x1fff8400                __DATA_RAM = .                0x1fff8400                __data_start__ = . *(.data) *(.data*) .data.limit_value                0x1fff8400        0x4 ./src/main.o                0x1fff8400                limit_value .data.str_aa55                0x1fff8404        0x2 ./src/main.o                0x1fff8404                str_aa55 *fill*         0x1fff8406        0x2  .data.int_11223344                0x1fff8408        0x4 ./src/main.o                0x1fff8408                int_11223344 .data.int_55667788                0x1fff840c        0x4 ./src/main.o                0x1fff840c                int_55667788

.bss            0x20000000       0x28                0x20000000                . = ALIGN (0x4)                0x20000000                __BSS_START = .                0x20000000                __bss_start__ = . *(.bss) *(.bss*) .bss.accumulator                0x2000001c        0x4 ./src/main.o                0x2000001c                accumulator *(COMMON) COMMON         0x20000020        0x8 ./src/main.o                0x20000020                bss_val                0x20000024                counter                0x20000028                . = ALIGN (0x4)                0x20000028                __bss_end__ = .                0x20000028                __BSS_END = .
                0x000009cc                __DATA_ROM = .
另外,从这map文件里也可以看到,这个__DATA_ROM对应的地址是0x000009cc,也就是说,这些
int limit_value = 1000000;unsigned char str_aa55[2] = {0xAA,0x55};unsigned int  int_1122334455667788 = 0x11223344;unsigned int  int_55667788 = 0x55667788;
等等变量的的初始值是来源于0x000009cc这里。
那就直接查看生成的hex文件

是不是很巧,是不是很妙?!
不过,还是很好奇,这是怎么做到的,怎么恰巧这些值就在这个地址呢?
秘密就在于ld文件里的这个语句:.data : AT(__DATA_ROM)
意思是,定义在data段的变量对应的初始化值,就放在__DATA_ROM中。就这么简单,剩下的交给编译器就行了。
这里顺便提一下,排查跟踪这些信息需要掌握编译链接相关知识,特别是链接脚本和生成的map内容,我之前也跟我身边的很多小伙伴讲过这些内容,但是我建议系统地看看这些内容。我之前是无意中从《程序员的自我修养》这本书学到的,最大的感受就是让我得到了启发,在往后的编程日子里更关注MCU地址、编译和链接方面的内容,对排查底层问题相当有帮助。

S32K1的工程很清楚了,但是RH850的呢?一根筋的程序员,还是想知道__start到底干了啥?它所在的库又是怎么链接进来的,是怎么初始化的?
对这个问题一直记在心里,是一个化不开的结。终于某一天,我居然真的无意中发现了__start的源码,感叹小日子真的有一手。
这里涉及到的内容比较多也比较复杂,后续再写个文章讲解下GreenHills编译器的启动链接库到底干了什么,敬请关注!
果这个文章能对你有帮助,请点个赞👍🏻点个在看,感谢!
关注公众号“嵌入式软件实战派”,我给你分享更多面试知识和技巧。

如果你喜欢我的文章,请关注,并转发点赞在看,这是对我莫大的鼓励!

本文版权归本号所有,同时欢迎各路朋友转载转发。

嵌入式软件实战派 专注嵌入式软件开发领域知识传授,包括C语言精粹,RTOS原理与使用,MCU驱动开发,AUTOSAR搭建,软件架构方法设计等。
评论
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 103浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 113浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 63浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 77浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 83浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 66浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 167浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 40浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦