【光电智造】机器视觉-深度学习在工业缺陷检测中的应用:从数据到部署实战

今日光电 2023-10-23 19:20
今日光电
       有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。欢迎来到今日光电!


----与智者为伍 为创新赋能----

基于深度学习的工业缺陷检测技术

工业制造领域中,产品质量的保证是至关重要的任务之一。然而,人工的检测方法不仅费时费力,而且容易受到主观因素的影响,从而降低了检测的准确性和一致性。近年来,基于深度学习的技术在工业缺陷检测领域取得了显著的突破,其凭借其出色的特征学习和自动化能力,逐渐成为工业缺陷检测的热门方向。

深度学习在工业缺陷检测中的应用

深度学习是一种模仿人脑神经网络结构和工作方式的机器学习方法。在工业缺陷检测中,深度学习技术可以通过训练模型从图像、视频或传感器数据中自动学习特征,并进行高效的缺陷检测。

卷积神经网络(CNN)

卷积神经网络是深度学习中应用广泛的一种网络结构,特别适合处理图像数据。在工业缺陷检测中,可以使用卷积神经网络来识别产品表面的缺陷,例如裂纹、瑕疵等。
基于TensorFlow和Keras的卷积神经网络:

import tensorflow as tf
from tensorflow.keras import layers, models

# 构建卷积神经网络模型
def build_cnn_model(input_shape, num_classes):
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(num_classes, activation='softmax'))
return model

# 定义输入数据形状和类别数量
input_shape = (224, 224, 3) # 假设图像大小为224x224,3个颜色通道
num_classes = 2 # 两类:正常和缺陷

# 构建模型
model = build_cnn_model(input_shape, num_classes)

# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# 打印模型摘要
model.summary()


物体检测与分割

在工业场景中,不仅需要检测缺陷的存在,还需要确定缺陷的位置和范围。物体检测和分割技术可以帮助实现这一目标。常用的方法包括基于区域的CNN(R-CNN)、快速R-CNN、更快的R-CNN(Faster R-CNN)以及Mask R-CNN等。

生成对抗网络(GAN)

生成对抗网络是一种由生成器和判别器组成的结构,可以用于合成逼真的图像。在工业缺陷检测中,可以使用生成对抗网络生成大量包含缺陷的合成图像,从而提升模型的鲁棒性和泛化能力。


数据增强与迁移学习

由于工业缺陷图像数量有限,数据增强和迁移学习成为提升模型性能的重要手段。数据增强可以通过对图像进行随机旋转、翻转、缩放等操作来扩充数据集。迁移学习则可以将在大规模数据集上预训练的模型应用于工业缺陷检测任务中,从而加速模型的训练和提升性能。

使用预训练的VGG16模型来进行图像分类

import tensorflow as tf
from tensorflow.keras.applications import VGG16
from tensorflow.keras.applications.vgg16 import preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
import numpy as np

# 加载预训练的VGG16模型,去掉顶部的全连接层
base_model = VGG16(weights='imagenet', include_top=False)

# 加载一张待分类的图像
img_path = 'path_to_your_image.jpg'
img = image.load_img(img_path, target_size=(224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = preprocess_input(img_array)

# 使用预训练模型进行预测
features = base_model.predict(img_array)

# 进行预测结果解码
decoded_predictions = decode_predictions(features)

# 打印预测结果
for i, (imagenet_id, label, score) in enumerate(decoded_predictions[0]):
print(f"{i + 1}: {label} ({score:.2f})")

基于TensorFlow和Keras:

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import VGG16
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model

# 数据准备
train_data_dir = 'path_to_train_data'
validation_data_dir = 'path_to_validation_data'
img_height, img_width = 224, 224
batch_size = 32

train_datagen = ImageDataGenerator(
rescale=1.0/255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
fill_mode='nearest')

validation_datagen = ImageDataGenerator(rescale=1.0/255)

train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')

validation_generator = validation_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')

# 构建模型
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3))

x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(128, activation='relu')(x)
predictions = Dense(1, activation='sigmoid')(x)

model = Model(inputs=base_model.input, outputs=predictions)

# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 训练模型
epochs = 10
steps_per_epoch = train_generator.n // train_generator.batch_size
validation_steps = validation_generator.n // validation_generator.batch_size

model.fit(train_generator,
epochs=epochs,
steps_per_epoch=steps_per_epoch,
validation_data=validation_generator,
validation_steps=validation_steps)

# 评估模型
test_loss, test_acc = model.evaluate(validation_generator, steps=validation_steps)
print(f"Test accuracy: {test_acc}")

我们使用了VGG16作为基础模型,对其顶部进行了定制,以适应工业缺陷检测任务。数据增强技术有助于增加模型的泛化能力。最后,模型通过在验证集上进行评估来检查其性能。


数据集与预处理

在工业缺陷检测任务中,构建高质量的数据集至关重要。数据集应该包含正常产品和不同类型的缺陷图像。为了训练一个有效的深度学习模型,需要足够多的数据以覆盖不同场景和缺陷类型。

数据预处理也是一个关键步骤。常见的预处理操作包括图像大小调整、归一化、数据增强等。归一化可以将图像的像素值映射到一个较小的范围,例如[0, 1]。数据增强可以通过随机变换来扩充数据集,从而提升模型的泛化能力。

模型选择与调优

在工业缺陷检测任务中,模型的选择取决于问题的复杂性和数据集的规模。如果数据集较小,可以考虑使用预训练的卷积神经网络(如VGG16、ResNet等)作为基础模型,并对其顶部进行微调。如果数据集较大,也可以尝试更深层次的网络结构或使用更先进的架构。

模型的调优是一个迭代的过程,需要通过不断调整超参数(如学习率、批量大小、优化器等)来优化模型性能。同时,监控训练和验证集上的性能指标,避免过拟合。

实时推理与部署

一旦训练好的模型达到了满意的性能,就可以将其部署到实际环境中进行实时推理。部署可以在嵌入式设备、服务器或云平台上进行。对于实时推理,模型的速度和资源消耗变得尤为重要。因此,在部署之前,可能需要对模型进行优化,以减小模型的体积和加速推理过程。

持续改进与自动化

工业缺陷检测是一个动态的任务,不同类型的缺陷可能会随着时间的推移而变化。因此,持续监控和改进模型是必要的。定期收集新数据并对模型进行再训练,以保持其准确性。同时,也可以考虑使用自动化方法,如自动超参数调整,来提高模型的性能。

结论

基于深度学习的工业缺陷检测技术正以其强大的特征学习和自动化能力,在工业制造领域展现出巨大的潜力。通过选择合适的模型架构、构建高质量的数据集、进行数据预处理、持续改进和自动化等步骤,可以实现高效、准确的工业缺陷检测系统。随着技术的不断发展,我们可以期待在工业缺陷检测领域取得更多的突破和进步。

来源:新机器视觉


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566

评论 (0)
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 237浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 385浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 203浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 284浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 257浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 237浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 182浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 286浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 171浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 298浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 231浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦