正弦直方图方法测试模数转换器(ADC)

原创 摩尔学堂 2023-10-22 08:56

关键要点

  • 使用正弦直方图测试方法可以确定模拟数字转换器(ADC)的参数,并优于线性斜坡直方图测试方法。

  • 正弦直方图测试方法可以通过滤波器滤出正弦信号的谐波,提高线性度并增加测量精度。

  • 正弦直方图测试方法能够更好地预测ADC在快速变化信号处理中的性能,并测量AC相关的错误。

摘要

本文介绍了如何使用正弦直方图测试方法来确定模拟数字转换器(ADC)的参数。相比线性斜坡直方图测试方法,正弦直方图测试方法具有更多的优势,包括能够滤除谐波和噪音,提高测量精度,以及能够更好地预测ADC在快速变化信号处理中的性能。文章详细介绍了正弦波的幅度分布、输出直方图的推导方法,以及如何使用正弦直方图方法来确定ADC的非线性和DNL误差。此外,文章还提供了有关非理想情况和阅读推荐的内容,以帮助读者更好地理解和应用正弦直方图测试方法来评估ADC的性能。

本系列的上一篇文章探讨了线性斜坡直方图测试在确定模数转换器 (ADC) 传递函数方面的有用性。这次,我们将重点关注正弦直方图测试。我们将首先讨论这种形式的直方图测试相对于线性斜坡方法的优势,然后通过方程式并使用正弦直方图方法来确定假设的 4 位 ADC 的非线性。

为什么要进行正弦直方图测试?

产生完美的线性斜坡输入是线性斜坡直方图测试的基本要求。输入信号中的任何非线性都会直接增加测量误差。这是一个问题,因为典型信号发生器产生的斜坡信号的线性度仅限于 8 至 10 位。

相比之下,我们可以滤除正弦信号的谐波,以获得比信号发生器提供的更高的线性度。该滤波器还可以抑制信号上的大部分噪声,以提高测量精度。对于斜坡输入,滤波器不能用于降噪,因为它会改变波形的形状。

在许多应用中,ADC 处理快速变化的信号。动态测试可以更好地预测此类应用中的 ADC 性能。高频正弦输入使我们能够测量 ADC 转换点,然后我们可以使用该转换点来评估 ADC 的交流相关误差(或动态性能)。虽然原则上我们可以使用高频斜坡输入来测量与交流相关的误差,但在较高频率下保持斜坡线性度变得更具挑战性。

正弦波的幅度分布

在线性斜坡直方图测试中,输入分布是均匀的。由于理想的 ADC 具有生成任何代码的相同概率,因此此功能使得分析斜坡直方图方法的测试结果变得非常简单。正弦波具有更复杂的分布,这反过来又使测试方程变得复杂。

让我们推导出正弦波产生的样本的概率密度函数 (PDF),如下所示(图 1)。

图 1. 示例 ADC 的正弦交流输入。

波形对应于以下等式:

在哪里:

A是信号的幅度

B信号的偏移误差

f是正弦波的频率 (f
 = 1t
)。

考虑 T
4
 到 -T4 范围内信号的半周期。这段时间内IN落在12之间的概率是多少?通过将这两个值代入等式 1,我们可以创建以下等式,我们将使用该等式来查找相应的持续时间 ( 2 – 1 ):

等式2。

如果我们将该值除以总持续时间 (T
2
),我们就得到V 
IN
落在12之间的概率

等式 3。

利用上面的表达式,我们可以推导出PDF函数。假设未知 PDF 函数为f ( IN ),其积分为F ( IN )。IN位于12之间的概率如下:

等式 4。

 如果我们比较公式 4 和公式 3,我们可以得出结论,PDF 函数的积分为:

等式 5。

最后,对该函数求导,得到PDF函数:

等式 6。

这些计算只考虑了信号的半个周期,但如果我们考虑一个完整的周期,我们仍然会得到公式 6。信号持续时间和IN 在12范围内的持续时间都会加倍,因此我们最终会得到相同的结果。

在推导测试方程时,我们需要考虑到与斜坡输入不同,正弦波不具有均匀分布。为了进行直观演示,让我们看一下图 2 中的一对图。该图的顶部是公式 6 的图;下半部分是公式 6 的图。底部显示正弦波的旋转图。

图 2.上图:公式 6 的结果。下图:旋转的正弦波。

该图表明,正弦波过零附近的点出现的频率低于波峰和波谷附近的点。这是因为正弦波的变化率在过零处达到最大值,在波峰和波谷处达到最小值。因此,零交叉附近的样本不太可能出现。

导出输出直方图

现在我们已经生成了必要的方程,我们可以开始运行测试。我们将使用公式 3 为图 3 中的理想 4 位 ADC 构建输出直方图。请注意,公式 4 对于我们的目的同样有效 — 我只是选择使用公式 3 来进行此特定练习。

图 3. 4 位理想 ADC 传输函数。

假设如下:

  • 将振幅为A 的正弦波施加到 ADC。

  • 正弦波没有偏移误差(B = 0)。

  • 正弦波的幅度大于满量程电压。

因为正弦波两端超出了ADC的输入范围,所以我们可以确定输入执行了ADC的所有代码。

如果LE表示上述传递函数左侧的第一个转变点,我们可以使用以下等式来找到其他转变点:

等式 7。

对应于代码 0001 的直方图 bin 的计数(用 H(1) 表示)与输入落在由V LE和 ( LE + 1 LSB )界定的区域中的概率成正比。应用公式 3,我们得到:

方程 8.

其中T是捕获的样本总数。如果我们将方程 8 扩展到其他代码,我们可以导出 bin n计数的方程

方程 9.

为了验证这个方程,我们将使用图 3 中满量程电压为 1V 的传递函数来数字化具有以下特性的正弦波:

幅度 ( A ) = 1.1V

偏移误差 ( B ) = 0

频率 = 390.3 赫兹

我们将使用 40 kHz 的采样率。请注意,选择上述输入频率是为了不成为采样频率的分谐波;否则它是任意的。

通过收集 80,000 个样本,我们生成了图 4 中的直方图。红色曲线绘制了从公式 9 获得的值。

 

图 4.理想 ADC 的数字代码出现次数直方图。红色曲线显示公式 9 预测的值。

 

仿真结果与数学分析得到的值一致。为了帮助您更轻松地验证这一点,我在下表中提供了计算摘要。请注意,LE = –0.9375。

 

表 1.计算和模拟结果总结。

n

T [ n ]

sin -1 ( T [ n ] / A )

计算的H ( n )

模拟H ( n )

1

-0.8125

-0.8310

4819.7

4816

2

-0.6875

-0.6751

3970.3

3966

3

-0.5625

-0.5368

3523.3

3524

4

-0.4375

-0.4090

3252.7

3252

5

-0.3125

-0.2881

3080.7

3081

6

-0.1875

-0.1713

2973.5

2970

7

-0.0625

-0.0568

2914.2

2914

8

0.0625

0.0568

2895.3

2897

9

0.1875

0.1713

2914.2

2915

10

0.3125

0.2881

2973.5

2978

11

0.4375

0.4090

3080.7

3081

12

0.5625

0.5368

3252.7

3256

13

0.6875

0.6751

3523.3

3523

14

0.8125

0.8310

3970.3

3973

 

数学分析预测的代码计数与模拟预测的代码计数接近,但不完全相同。这是因为直方图测试是一种统计方法。因此,更多的样本应该会提高测量的准确性。

使用正弦直方图方法查找 DNL 误差

考虑图 5(红色曲线)所示的非理想 4 位 ADC。

图 5.示例 ADC 的理想(蓝色)和非理想(红色)响应。

下面的图 6 中提供了该 ADC 的微分非线性 (DNL) 图。

图 6.非理想 4 位 ADC 的 DNL。

与上一节中的理想情况一样,我们将使用满量程电压为 1 V 的非线性传递函数以 40 kHz 的采样率对 390.3 Hz 正弦波进行数字化。同样如前所述,A = 1.1 V,B = 0。

请注意,图 5 中的传递函数没有失调误差或增益误差。因此,第一个和最后一个转换发生在其理想值 ( LE = –0.9375)。收集 80,000 个样本,我们得到以下直方图(图 7)。

图 7.非理想示例 ADC 的数字代码出现次数直方图。

我们排除第一个和最后一个 bin,并将 bin 计数除以公式 9 给出的理想值。这给出了图 8 中的归一化直方图。

图 8.非理想示例 ADC 的数字代码出现次数的归一化直方图。

在标准化直方图中,理想的代码的 bin 计数为 1。因此,从 bin 计数中减去 1 会产生 DNL 信息,该信息由图 9 中的红色条形图绘制。蓝色条形图显示实际的 DNL 误差。

图 9.红色:示例 ADC 根据正弦直方图测试的 DNL 响应。蓝色:同一示例 ADC 的实际 DNL 响应。

同样,直方图方法的结果接近实际值,但并不完全相同。正确选择不同的测试参数可以提高给定测试时间内的准确性。彻底分析不同测试参数对直方图方法准确性的影响是一个相对复杂的统计问题,涉及置信度、概率等因素。对于那些有兴趣更深入了解这些影响的人,我将在下一节中推荐一些进一步的阅读材料。

非理想性和阅读建议

在上面的示例中,我们使用了没有增益误差或偏移误差的理论 ADC。我们还使用了具有已知幅度和零偏移的正弦波。实际上,ADC 可能同时存在偏移误差和增益误差,并且我们可能不知道输入的确切幅度或偏移误差。这些非理想性会使归一化方程变得更加复杂。

要了解如何考虑这些影响,您可以参阅Mark Burns 和 Gordon W. Roberts 撰写的“混合信号 IC 测试和测量简介”。有关选择不同测试参数(例如所需的过载量和样本数量)的全面讨论,您可以参考J. Blair 的“使用正弦波进行 ADC 非线性的直方图测量”和“ A/D 的全速测试”转换器”作者:J. Doernberg、HS Lee 和 DA Hodges。



11月09日-10日将在上海举办一期SerDes课程,本期短期课程旨在通过提供 SerDes 空间所需的系统级和电路级概念来弥补这些差距。课程将从传统的模拟架构开始,逐步发展到今天基于 DSP 的均衡和定时恢复。本课程从传统的模拟混合信号 SerDes 架构开始,该架构如今仍适用于 UCI、HBM 和 XSR 解决方案。之后,我们将转向 ADC-DSP 解决方案。

--点击图片即转至课程页面

--------------------

今天小编带来了:ISSCC2023套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。

ISSCC2023完整资料领取方式如下   
识别关注下方公众号
公众号对话框输入 1425 
由于公众号后台资料容量有限
每份资料有效期为30天,过期会被更新删除
资料仅供个人学习使用,禁止分享与转发!
大家如果需要,请及时下载!

1、深入理解SerDes(Serializer-Deserializer)之一

2、深入理解SerDes(Serializer-Deserializer)之二

3、科普:深入理解SerDes(Serializer-Deserializer)之三

4、资深工程师的ESD设计经验分享

5、干货分享,ESD防护方法及设计要点!

6、科普来了,一篇看懂ESD(静电保护)原理和设计!

7、锁相环(PLL)基本原理 及常见构建模块

8、当锁相环无法锁定时,该怎么处理的呢?

9、高性能FPGA中的高速SERDES接口

10、什么是毫米波技术?它与其他低频技术相比有何特点?

11、如何根据数据表规格算出锁相环(PLL)中的相位噪声

12、了解模数转换器(ADC):解密分辨率和采样率

13、究竟什么是锁相环(PLL)

14、如何模拟一个锁相环

15、了解锁相环(PLL)瞬态响应

16、如何优化锁相环(PLL)的瞬态响应

17、如何设计和仿真一个优化的锁相环

18、锁相环(PLL) 倍频:瞬态响应和频率合成

19、了解SAR ADC

20、了解 Delta-Sigma ADC

21、什么是数字 IC 设计?

22、什么是模拟 IC 设计?

23、什么是射频集成电路设计?

24、学习射频设计:选择合适的射频收发器 IC

25、连续时间 Sigma-Delta ADC:“无混叠”ADC

26、了解电压基准 IC 的噪声性能

27、数字还是模拟?I和Q的合并和分离应该怎么做?

28、良好通信链路性能的要求:IQ 调制和解调

29、如何为系统仿真建模数据转换器?

30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)

31、使用有效位数 (ENOB) 对 ADC 进行建模

32、以太网供电 (PoE) 的保护建议

33、保护高速接口的设计技巧

34、保护低速接口和电源电路设计技巧

35、使用互调多项式和有效位数对 ADC 进行建模

36、向 ADC 模型和 DAC 建模添加低通滤波器

37、揭秘芯片的内部设计原理和结构

38、Delta-Sigma ADCs中的噪声简介(一)

39、Delta-Sigma ADCs中的噪声简介(二)

40、Delta-Sigma ADCs 中的噪声简介(三)

41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)

42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)

43、放大器噪声对 Delta-Sigma ADCs 的影响(一)

44、放大器噪声对 Delta-Sigma ADCs 的影响(二)

45、参考电压噪声如何影响 Delta Sigma ADCs

46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声

47、时钟信号如何影响精密ADC

48、了解电源噪声如何影响 Delta-Sigma ADCs

49、运算放大器简介和特性

50、使用 Delta-Sigma ADCs 降低电源噪声的影响

51、如何设计带有运算放大器的精密电流泵

52锁定放大器的基本原理

53了解锁定放大器的类型和相关的噪声源

54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术

55、干货!《实用的RFIC技术》课程讲义

56、如何在您的下一个 PCB 设计中消除反射噪声

57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!   

58、帮助你了解 SerDes!                                    

往期精彩课程分享

1、免费公开课ISCAS 2015 :The Future of Radios_ Behzad Razavi

2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)

3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)

4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs

5免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)

6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)

7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动

8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi

9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块

10、免费公开课:ISSCC2020-小数N分频数字锁相环设计

11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)

12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础

13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础

14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)

15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)

16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe

17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)





专注于半导体人才培训,在线学习服务平台!


人才招聘服务平台

摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 188浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 138浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 38浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 135浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 62浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 96浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 101浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 172浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 95浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 112浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 93浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 88浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦