Si3N4DBC和AMB陶瓷基板

原创 功率半导体那些事儿 2023-10-21 19:19

当你该养精蓄锐时,不要着急出人头地;当你该刻苦努力时,别企图一鸣惊人;当你该磨砺心智时,别妄求突然开悟。你的基础打得越牢靠,你的过程走得越完整,你的努力坚持得越长久,你的成长才更容易发生质的飞跃。这段话是排版模板自带的,就直接引用了,不再另外“抒情”了,与君共勉!

前几篇我们一起聊了聊市面上比较常见的车规模块以及涉及到的比较不寻常的工艺技术,主要集中在芯片的互连技术。今天我们来聊一聊模块结构中的另外一个部分--绝缘基板,不管工业模块还是车规模块都被经常谈及的一个部分。

前言

随着宽禁带半导体的发展,功率半导体器件往更高的功率密度,更高的芯片温度以及更高的可靠性方向发展,相应地也对于功率半导体模块封装的提出了更高的要求。包括我们前面聊到的无焊料,无键合线等互连技术趋势外,绝缘基板的选择也成为经常讨论的话题。

为了提高模块的散热性能,必须在芯片和底板之间放置一块具有高导热率的绝缘基板,在绝缘基板上构建电路互连的主要方法是DBC(直接键合铜),其中一个陶瓷绝缘层--具有非常好的电绝缘和电介质强度,直接粘合在两层铜之间。这些基板通常根据应用情况和其热性能、机械性能和电绝缘性能来进行选择。

早之前我们也有简单聊过绝缘基板

功率模块Ⅰ—— 绝缘衬底 和 功率模块Ⅱ —— 绝缘衬底金属化

常见的绝缘基板材料有氧化铝(Al2O3以及掺杂9%氧化锆的HPS)、氮化铝(AlN)、氮化硅(Si3N4)等。其中Al2O3算是最经济的选择,虽然它具有相对较高的机械强度,但是与其他材料相比,导热系数方面显得便弱了很多,相对来说不太契合后续功率器件的发展要求;AlN具有更高的导热率,CTE与硅几乎相同,有效地降低了分层和焊料疲劳等问题,但机械强度在较大的热循环中还不够有优势。Si3N4的CTE也非常接近半导体芯片,同时提供了很好的机械强度和热疲劳能力,但成本和供应相对来说算是一个“弱点”,但当下我们在高性能模块中还是很常见的,氮化硅基板的使用在未来应该会变得越为常见。

最近朋友分享了一篇罗杰斯关于氮化硅DBC和AMB对比的文章,

‘Comparison of Silicon Nitride DBC and AMB Substrates for different  applications in power electronics’

基于这个,我们再来聊一聊绝缘基板。

氮化硅DBC和AMB

DBC(直接键合铜)技术和AMB(活性金属钎焊)技术,目前最常见的两种基板敷铜工艺,下面是两种制造过程的简单示意图。

DBC的基本原理是在铜和陶瓷基板之间引入氧元素,在约1000℃时形成Cu/O共晶液相,进而与陶瓷基板进行粘附。但AlN和Si3N4等则需要首先在其表面进行一层氧化,才能够满足传统的DBC工艺。

AMB的基本原理是在900℃的温度下,含有活性元素Ti、Zr的焊料在陶瓷和金属的界面润湿并反应,从而实现粘合。

上面所示的SEM电镜扫描界面图,我们可以更为清楚地看到每一层。

Si3N4陶瓷基板特性



热阻



铜金属化基板的热阻主要取决于陶瓷基本材料,下表是AlN和Si3N4基板搭配0.3mm的铜层后的热阻对比,由于热阻Rth和厚度成正比,所以氮化硅厚度是氮化铝一半时,热阻几乎一致。

并且我们可以看到,其他条件相同的前提下,Si3N4采用DBC和AMB的情况下热阻也几乎一样。



热冲击



为了了解几种不同陶瓷基板可靠性,通过热冲击测试对他们进行表征对比,下面是AlN、Al2O3、HPS、Si3N4(DBC&AMB)的对比。

我们可以看到,相同条件下,Si3N4的DBC基板比常见的Al2O3的DBC基板抗热冲击的能力提高了20倍,而其AMB基板(0.5mm铜层)更是超过了50倍。



电绝缘性能



对几种陶瓷基板进行了局部放电和击穿强度测试,测试条件:球电极50Hz交流电,变化速率1kV/s,在5kV下测量局部放电,增加电压直到出现击穿。测试结果如下,

所有陶瓷基板的电绝缘性能都还不错,所以一般我们都不太会谈及这方面的影响。



Layout 建议



AMB陶瓷基板的绝缘间隙必须略大于DBC的,去除钎焊材料的必要刻蚀工艺限制的这方面的最小尺寸。高功率密度的需求意味着更高的电流,而AMB允许更厚的铜层(0.3mm~0.8mm),即能够拥有更高的电流承载能力。

应用

下面是文章中给到的陶瓷基板隔离电压和导热系数相关的应用领域分布图,

以及不同陶瓷基板的特性优劣和对应的相关应用对比,

小结

今天的内容主要在于了解Si3N4的DBC和AMB陶瓷基板的相关特性,以及和几种主要陶瓷基板之间的比较。就像任何事情基本都会谈及的一个关键因素“成本”,我们更多的时候看到的还是传统的Al2O3 DBC基板,或者是为了增加机械强度而掺杂9%氧化锆的HPS基板。只有在一些追求性能更优,成本能够权衡的领域可以看到Si3N4 DBC或者AMB基板。

不管怎么样,未来能够遇见的肯定会越来越多,我们能够学习的也会越来越多,虽然现在要学习的也很多。但我们可以再回头喝一口开头的鸡汤,任何事情不都是需要一个过程,就看你在其中抱着怎样的态度。

最后,今天的内容希望你们能够喜欢!

Power semiconductors

关注微信号,让我们由浅入深慢慢丰富功率半导体那些事儿!

点个星标,茫茫人海中能够多看我一眼

点分享

点收藏

点在看

点点赞

功率半导体那些事儿 从易到难,慢慢地支撑起整个半导体的框架,一个从零开始学习功率半导体的地方,我们可以一起谈谈功率半导体的那些事儿。
评论 (0)
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 150浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 157浏览
  • 家电,在人们的日常生活中扮演着不可或缺的角色,也是提升人们幸福感的重要组成部分,那你了解家电的发展史吗?#70年代结婚流行“四大件”:手表、自行车、缝纫机,收音机,合成“三转一响”。#80年代随着改革开放的深化,中国经济开始飞速发展,黑白电视机、冰箱、洗衣机这“新三件”,成为了人们对生活的新诉求。#90年代彩电、冰箱、全自动洗衣机开始大量进入普通家庭,快速全面普及,90年代末,家电产品实现了从奢侈品到必需品的转变。#00年代至今00年代,随着人们追求高品质生活的愿望,常用的电视机、洗衣机等已经远
    启英AI平台 2025-03-25 14:12 89浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 146浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 109浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 185浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 188浏览
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 148浏览
  •       知识产权保护对工程师的双向影响      正向的激励,保护了工程师的创新成果与权益,给企业带来了知识产权方面的收益,企业的创新和发明大都是工程师的劳动成果,他们的职务发明应当受到奖励和保护,是企业发展的重要源泉。专利同时也成了工程师职称评定的指标之一,专利体现了工程师的创新能力,在求职、竞聘技术岗位或参与重大项目时,专利证书能显著增强个人竞争力。专利将工程师的创意转化为受法律保护的“无形资产”,避免技术成果被他人抄袭或无偿使
    广州铁金刚 2025-03-25 11:48 181浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 204浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 82浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 154浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 109浏览
我要评论
0
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦