要点概述
当前模式控制(CMC)是一种广泛使用的替代电压模式控制的方法,它对输入电压和负载电流的变化更快地做出响应。
电压模式控制通过将输出电压反馈到误差放大器来控制输出电压,而CMC则通过采样电感电流来控制输出电压。
CMC相较于电压模式控制在控制系统设计上更加复杂,但在提高响应时间和简化环路补偿方面具有优势。
摘要
本文介绍了电压模式控制和当前模式控制(CMC)用于开关电源调节器的原理。电压模式控制使用输出电压作为反馈信号,通过调整脉宽调制(PWM)波形来调节输出电压。而CMC通过采样电感电流并将其纳入反馈环路中,通过调整电感电流来控制输出电压。CMC相较于电压模式控制具有更快的响应时间,但也增加了系统设计的复杂性。不同的CMC方式包括峰值模式控制和平均模式控制,它们分别通过比较电感电流和错误信号或者将电感电流输入到集成的电流误差放大器来控制电感电流。尽管平均模式控制在理论上具有优势,但实际电路性能并不一定比峰值模式控制更好。
有关开关稳压器的介绍性文章有时会显示仅描述功率级的图表,但如果您一直在阅读我有关开关稳压器技术和拓扑的文章,您就会知道这些电路需要功率级和控制器。虽然功率级可能确实是基于电感器的电压转换的关键,但基于反馈的开关控制是生成可预测的稳定输出的关键。
在我的闭环控制入门书中,我们检查并模拟了电压控制电路。这次,我们将讨论一种不同的控制方案:电流模式控制,也称为 CMC。
在进入主题之前,让我们简要回顾一下最直接的闭环控制方法。它遵循以下步骤:
输出电压通过电阻分压器反馈至误差放大器。
误差放大器产生与缩放输出电压和参考电压之间的差值成比例的误差信号。
比较器使用误差信号和外部生成的斜坡信号来产生驱动开关的PWM波形。
PWM 占空比的变化会影响输出电压。
当所有这些都集成到适当补偿的反馈环路中时,调节器将锁定指定的输出电压并自动响应线路和负载变化。这就是我们所说的电压模式控制。
下面的图 1 显示了通用电路的电压控制设置。
虽然直观且有效,但电压模式控制具有固有的局限性:在输出端检测到电压变化,由于电容的原因,电压变化必然会逐渐变化,并且在输出端也会观察到主控制变量(PWM 占空比)的影响。因此,闭环控制动作必须从输出一路传播到再次输出。这会减慢该过程,使得电压模式控制成为一种处理线路或负载波动的相当滞后的方法。
CMC 从根本上修改了控制回路的传递函数。其基本前提是,通过对电感电流进行采样并将该信息纳入反馈环路,电路可以通过电感电流来调节输出电压。换句话说,直接控制的变量是电感电流,并且输出电压由于调节电感电流而自行调节。
与电压模式控制相比,CMC 显着增加了控制系统设计的复杂性。尽管如此,这是一种可行的方法,可以提高响应时间并简化环路补偿,而不会严重降低电路性能。
尽管细节会因转换器拓扑和所实施的 CMC 类型而异,但图 2 中的图表应该让您了解如何将电流模式控制合并到降压转换器中。
电流检测电阻 ( R SENSE ) 生成与电感器电流成比例的电压。请注意,我使用的术语“电感器电流”有些宽松 - 通过检测电阻器的电流并不总是与通过电感器的电流相同。在上图中,检测电阻位于电感器的输出侧并与电感器串联,R SENSE两端的电压始终与瞬时电感器电流成正比。
还可以放置检测电阻,使其与功率级中的开关串联。这会在开关周期的接通部分产生与电感器电流成比例的电压。然而,对于升压转换器,电感器与输入电源串联。为了与电感器串联,检测电阻器必须位于电路的输入侧。
如图所示,电压反馈仍然存在——感测电感电流并不会取代感测输出电压。相反,这两种测量结果以一种允许环路通过控制电感器电流来响应输出偏差的方式组合。接下来,我们将讨论实现此目的的两种不同方法。
峰值 CMC 和平均 CMC 代表控制电感器电流的两种不同方式。通过峰值 CMC,电感器电流(由R SENSE和放大器转换为电压)与误差信号进行比较。由此产生 PWM 波形,当瞬时电感器电流达到指定幅度时,该波形关闭开关。
通过平均 CMC,与电感器电流相对应的电压被传送到集成电流误差放大器。该放大器的输出成为 PWM 生成比较器的输入。外部生成的斜坡信号提供比较器的另一个输入。
我们上面检查的通用 CMC 图显示了峰值 CMC 方案。平均 CMC 看起来更像图 3。
平均 CMC 解决了峰值 CMC 的缺点,但它并不一定优越 - 与往常一样,每种方法都有优点和缺点。尽管普通 CMC 具有显着的理论优势,但这些优势并不总能转化为物理电路性能的显着提高。
在本文中,我们回顾了开关稳压器的电压模式控制,解释了为什么电流模式控制是理想的替代方案,并回顾了有关 CMC 如何运行的一些介绍性信息。
11月09日-10日将在上海举办一期SerDes课程,本期短期课程旨在通过提供 SerDes 空间所需的系统级和电路级概念来弥补这些差距。课程将从传统的模拟架构开始,逐步发展到今天基于 DSP 的均衡和定时恢复。本课程从传统的模拟混合信号 SerDes 架构开始,该架构如今仍适用于 UCI、HBM 和 XSR 解决方案。之后,我们将转向 ADC-DSP 解决方案。
--点击图片即转至课程页面
今天小编带来了:ISSCC2023套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。
1、深入理解SerDes(Serializer-Deserializer)之一
2、深入理解SerDes(Serializer-Deserializer)之二
3、科普:深入理解SerDes(Serializer-Deserializer)之三
4、资深工程师的ESD设计经验分享
5、干货分享,ESD防护方法及设计要点!
6、科普来了,一篇看懂ESD(静电保护)原理和设计!
7、锁相环(PLL)基本原理 及常见构建模块
8、当锁相环无法锁定时,该怎么处理的呢?
9、高性能FPGA中的高速SERDES接口
10、什么是毫米波技术?它与其他低频技术相比有何特点?
11、如何根据数据表规格算出锁相环(PLL)中的相位噪声
12、了解模数转换器(ADC):解密分辨率和采样率
13、究竟什么是锁相环(PLL)
14、如何模拟一个锁相环
15、了解锁相环(PLL)瞬态响应
16、如何优化锁相环(PLL)的瞬态响应
17、如何设计和仿真一个优化的锁相环
18、锁相环(PLL) 倍频:瞬态响应和频率合成
19、了解SAR ADC
20、了解 Delta-Sigma ADC
21、什么是数字 IC 设计?
22、什么是模拟 IC 设计?
23、什么是射频集成电路设计?
24、学习射频设计:选择合适的射频收发器 IC
25、连续时间 Sigma-Delta ADC:“无混叠”ADC
26、了解电压基准 IC 的噪声性能
27、数字还是模拟?I和Q的合并和分离应该怎么做?
28、良好通信链路性能的要求:IQ 调制和解调
29、如何为系统仿真建模数据转换器?
30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)
31、使用有效位数 (ENOB) 对 ADC 进行建模
32、以太网供电 (PoE) 的保护建议
33、保护高速接口的设计技巧
34、保护低速接口和电源电路设计技巧
35、使用互调多项式和有效位数对 ADC 进行建模
36、向 ADC 模型和 DAC 建模添加低通滤波器
37、揭秘芯片的内部设计原理和结构
38、Delta-Sigma ADCs中的噪声简介(一)
39、Delta-Sigma ADCs中的噪声简介(二)
40、Delta-Sigma ADCs 中的噪声简介(三)
41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)
42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)
43、放大器噪声对 Delta-Sigma ADCs 的影响(一)
44、放大器噪声对 Delta-Sigma ADCs 的影响(二)
45、参考电压噪声如何影响 Delta Sigma ADCs
46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声
47、时钟信号如何影响精密ADC
48、了解电源噪声如何影响 Delta-Sigma ADCs
49、运算放大器简介和特性
50、使用 Delta-Sigma ADCs 降低电源噪声的影响
51、如何设计带有运算放大器的精密电流泵
52、锁定放大器的基本原理
53、了解锁定放大器的类型和相关的噪声源
54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术
55、干货!《实用的RFIC技术》课程讲义
56、如何在您的下一个 PCB 设计中消除反射噪声
57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!
58、帮助你了解 SerDes!
1、免费公开课:ISCAS 2015 :The Future of Radios_ Behzad Razavi
2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)
3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)
4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs
5、免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)
6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)
7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动
8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi
9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块
10、免费公开课:ISSCC2020-小数N分频数字锁相环设计
11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)
12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础
13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础
14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)
15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)
16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe)
17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)
点击下方“公众号”,关注更多精彩
半导体人才招聘服务平台