FPGA零基础学习之Vivado-超声波驱动设计

原创 FPGA技术江湖 2023-10-18 08:02

大侠好,欢迎来到FPGA技术江湖,江湖偌大,相见即是缘分。大侠可以关注FPGA技术江湖,在“闯荡江湖”、"行侠仗义"栏里获取其他感兴趣的资源,或者一起煮酒言欢。“煮酒言欢”进入IC技术圈,这里有近100个IC技术公众号。


大侠好,欢迎来到FPGA技术江湖。本系列将带来FPGA的系统性学习,从最基本的数字电路基础开始,最详细操作步骤,最直白的言语描述,手把手的“傻瓜式”讲解,让电子、信息、通信类专业学生、初入职场小白及打算进阶提升的职业开发者都可以有系统性学习的机会。

系统性的掌握技术开发以及相关要求,对个人就业以及职业发展都有着潜在的帮助,希望对大家有所帮助。本次带来Vivado系列,超声波驱动设计。话不多说,上货。


超声波驱动设计


作者:李西锐  校对:陆辉


一、简介

声音是我们日常生活中不可缺少的一种信号,在传递信息的同时,也在生活中的各个领域有较多的应用。根据声音的频率,我们将声音大致划分为三个阶段,人耳的听力范围,一般在20Hz~20000Hz之间。低于这个范围,我们称之为次声波;高于这个范围,称之为超声波。超声波的应用比较广泛,比如:超声波检查、超声波碎石、超声波清洗、超声波测速、超声波测距等等。此次我们就来研究一下它的其中一项应用:超声波测距。

我们用到的试验模块为HC-SR04超声波模块,它的测量距离在2cm~400cm之间。测量精度在3mm左右。模块包含了超声波的发射器、接收器和控制电路。超声波发射器在启动后会发出固定频率的方波,用声波去测量距离,不需要我们接触被测物体,在空间上使得我们测距变得方便很多。


二、工作原理

1、采用IO口TRIG触发测距,给至少10us的高电平信号,测量周期建议在60ms以上,以防止发射的信号对回响信号造成影响。

2、模块会自动发送8个40Khz的方波信号,接收器自动检测是否有回响信号返回。

3、有信号返回时,通过IO口ECHO输出一个高电平信号,高电平持续的时间就是方波从发射到返回的时间。测量距离=(高电平时间*声速(340m/s))/2;

在此需要我们注意的事,发射器是自动发送方波信号的,而且会自动检测是否有信号返回,这让我们省去了一大部分工作,使得测量变得简单。其次,在计算测量距离时,我们要将计算出来的结果除以2,因为我们测得的时间是往返的时间,也就是双倍的路程。


三、实物图


电气参数


五、超声波时序图


在时序图中,我们可以看出,我们需要生成一个周期至少为60ms,且高电平维持时间至少为10us的一个触发信号。


六、实验要求

此次设计,要求能够正常驱动模块,计算出的距离,计算其平均值以保证准确性。数码管上显示出距离,单位为m,精确到mm。并且,蜂鸣器能够根据距离响出不同频率的报警声音,距离越近,响声频率越频繁。


七、设计框架

八、设计实现

在计算回响信号的时间时,我们可以检测回响信号的上升沿和下降沿来作为计时器的开始和结束。在我们计算出距离之后,可以每三个数据计算一次平均值。然后将数据输出给其他模块。


首先,我们新建工程。

选择新建文件,然后先新建顶层文件

按照我们所画框架写入顶层端口。

重复上述新建文件的过程,新建ultrasonic_driver文件,代码如下: 

1    module ultrasonic_driver(2  3      input   wire               clk,4      input   wire               rst_n,5      input   wire               echo,6      output   reg               trig,7      output   reg     [11:0]      distance,8      output   reg               data_valid9    );10 11     parameter   t = 3_000_000;12 13     reg       [21:0]      cnt;14     reg                 state;15     reg                 echo_r, echo_rr;16     reg       [20:0]      echo_cnt;17     reg       [20:0]      cnt_temp;18     wire       [11:0]      d_r;19     reg       [35:0]      temp;20     reg                 data_valid_r;21     22     always @ (posedge clk)  echo_r <= echo;23     always @ (posedge clk)  echo_rr <= echo_r;24     25     always @ (posedge clk, negedge rst_n)26     begin27       if(rst_n == 1'b0)28         cnt <= 22'd0;29       else if(cnt == t - 1)30         cnt <= 22'd0;31       else32         cnt <= cnt + 1'b1;33     end34 35     always @ (posedge clk, negedge rst_n)36     begin37       if(rst_n == 1'b0)38         trig <= 1'b0;39       else if(cnt < 1000)40         trig <= 1'b1;41       else42         trig <= 1'b0;43     end44 45     always @ (posedge clk, negedge rst_n)46     begin47       if(rst_n == 1'b0)48         begin49           echo_cnt <= 21'd0;50           state <= 1'd0;51           data_valid_r <= 1'b0;52           echo_cnt <= 21'd0;53         end54       else55         case(state)56           1'd0  :  begin57                   if(echo_r & (~echo_rr))58                     state <= 1'd1;59                   else60                     begin61                       state <= 1'd0;62                       data_valid_r <= 1'b0;63                     end64                 end65           1'd1  :  begin66                   if((~echo_r) & echo_rr)67                     begin68                       state <= 1'd0;69                       echo_cnt <= 21'd0;70                       cnt_temp <= echo_cnt;71                       data_valid_r <= 1'b1;72                     end73                   else74                     begin75                       state <= 1'd1;76                       echo_cnt <= echo_cnt + 1'b1;77                       cnt_temp <= cnt_temp;78                     end79                 end80         endcase81     end82     83     assign d_r = cnt_temp * 34 / 10_000;84     85     always @ (posedge clk, negedge rst_n)86     begin87       if(rst_n == 1'b0)88         temp <= 36'd0;89       else if(data_valid_r)90         temp <= {temp[23:0],d_r};91       else92         temp <= temp;93     end94     95     always @ (posedge clk) data_valid <= data_valid_r;96     97     always @ (posedge clk, negedge rst_n)98     begin99       if(rst_n == 1'b0)100        distance <= 12'd0;101      else if(data_valid)102        distance <= (temp[35:24] + temp[23:12] + temp[11:0]) / 3;103      else104        distance <= distance;105    end106107  endmodule


在完成测距时,输出一个valid信号,这个信号要作为后续我们保存数据以及计算平均值的标志信号。


数码管代码如下:

1   module seven_tube_driver(2 3     input   wire          clk,4     input   wire          rst_n,5     input   wire  [11:0]  data,   6     7     output  reg     [5:0] sel,8     output  wire    [7:0] seg9   );10    11    parameter t = 50000;12    13    reg   [15:0]  cnt;14    reg   [3:0]   show_data;15    reg   [7:0]   seg_r;16    17    always @ (posedge clk, negedge rst_n)18    begin19    if(rst_n == 1'b0)20      cnt <= 16'd0;21    else if(cnt == t - 1)22      cnt <= 16'd0;23    else24      cnt <= cnt + 1'b1;25    end26    27    always @ (posedge clk, negedge rst_n)28    begin29    if(rst_n == 1'b0)30      sel <= 6'b111_110;31    else if(cnt == t - 1)32      sel <= {sel[4:0],sel[5]};33    else34      sel <= sel;35    end36    37    always @ (*)38    begin39    case(sel)40      6'b111_110  : show_data = 4'hf;41      6'b111_101  : show_data = 4'hf;42      6'b111_011  : show_data = data/1000;43      6'b110_111  : show_data = data/100%10;44      6'b101_111  : show_data = data/10%10;45      6'b011_111  : show_data = data%10;46      default : show_data = 4'd0;47    endcase48    end49    50    always @ (*)51    begin52    case(show_data)53      4'd0  : seg_r = 8'b1100_0000;54      4'd1  : seg_r = 8'b1111_1001;55      4'd2  : seg_r = 8'b1010_0100;56      4'd3  : seg_r = 8'b1011_0000;57      4'd4  : seg_r = 8'b1001_1001;58      4'd5  : seg_r = 8'b1001_0010;59      4'd6  : seg_r = 8'b1000_0010;60      4'd7  : seg_r = 8'b1111_1000;61      4'd8  : seg_r = 8'b1000_0000;62      4'd9  : seg_r = 8'b1001_0000;63      default:  seg_r = 8'd0;64    endcase65    end66    67    assign seg = (sel == 6'b111_011) ? (seg_r & 8'b0111_1111) : seg_r;68    69  endmodule


第67行的作用是为了在显示时,显示一个小数点,这样数码管显示的数值单位就为米,精确度为毫米。

在蜂鸣器模块中,蜂鸣器的响声为嘀嘀响声我们可以根据距离的大小,让蜂鸣器响声的快慢作出改变。


我们根据距离改变计数器的最大计数次数,以达到两次“嘀嘀”响声的时间间隔发生变化。


写好代码之后,我们做一下仿真,代码如下:

1   `timescale 1ns / 1ps2 3   module ultrasonic_tb;4 5     reg                clk;6     reg                rst_n;7     reg                echo;8     wire               trig;9     wire       [5:0]      sel;10    wire       [7:0]      seg;11    wire               beep;12    13    defparam ultrasonic_inst.ultrasonic_driver_inst.t = 3000;14    15    initial begin16      clk = 1'b0;17      rst_n = 1'b0;18      echo = 1'b0;19      #105;20      rst_n = 1'b1;21      #1000;22      23      repeat(10) begin24      @ (negedge trig);25      #1002;26      echo = 1'b1;27      #20000;28      echo = 1'b0;29      end30      #10000;31      $stop;32    end33    34    always #10 clk = ~clk;35    36    ultrasonic ultrasonic_inst(37    .clk      (clk  ),38    .rst_n      (rst_n  ),39    .echo      (echo  ),40    .trig      (trig  ),41    .sel      (sel  ),42    .seg      (seg  ),43    .beep      (beep  )44  );45    46  endmodule


仿真图如下:


从图中我们可以看出,距离在多次采样之后达到了稳定值。由于我们仿真时间给的较短,所以距离的数值不大,但是已经足够看出结果。



- End -


福利】:QQ交流群173560979,进群备注名字+学校/企业。
淘宝店铺:https://shop588964188.taobao.com
论坛网址:www.sxznfpga.com
叁芯智能FPGA课程

FPGA技术江湖广发江湖帖

无广告纯净模式,给技术交流一片净土,从初学小白到行业精英业界大佬等,从军工领域到民用企业等,从通信、图像处理到人工智能等各个方向应有尽有,QQ微信双选,FPGA技术江湖打造最纯净最专业的技术交流学习平台。


FPGA技术江湖微信交流群

加群主微信,备注姓名+公司/学校+岗位/专业进群


FPGA技术江湖QQ交流群

备注姓名+公司/学校+岗位/专业进群

FPGA技术江湖 任何技术的学习就好比一个江湖,对于每一位侠客都需要不断的历练,从初入江湖的小白到归隐山林的隐世高人,需要不断的自我感悟自己修炼,让我们一起仗剑闯FPGA乃至更大的江湖。
评论
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 65浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 45浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 67浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 78浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • 本文介绍Linux系统(Ubuntu/Debian通用)挂载exfat格式U盘的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。修改对应的内核配置文件# 进入sdk目录cdrk3562_linux# 编辑内核配置文件vi./kernel-5.10/arch/arm64/configs/rockchip_linux_defconfig注:不清楚内核使用哪个defc
    Industio_触觉智能 2024-12-10 09:44 90浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 65浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 44浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦