基于infineonPSOC62开发板的-信号处理前端虚拟示波器-工具集

RTThread物联网操作系统 2023-10-11 18:24

一、前言


本项目基于英飞凌PSoC 6 RTT开发板实现了信号处理前端-一个信号处理的工具集。

包括虚拟示波器,音频采集分析,谐波分析,周期幅值相位分析,数字滤波,极值检测,可上位机可视化和命令行人机交互,可以方便继续扩展相关功能,继续丰富工具集。

视频: https://www.bilibili.com/video/BV1PM4y147v1/

代码仓库: https://gitee.com/qinyunti/infineon-psoc62.git


二、移植DSP算法库


2.1添加代码

git clone https://github.com/ARM-software/CMSIS_5.git

CMSIS_5\CMSIS\DSP下是相关文件,Source下是源码

将DSP文件夹复制到自己的工程目录中,只保留

Include,PrivateInclude,Source三个文件夹

Source下的每个子文件夹都是一类算法,里面的每个c都对应一个计算函数,并且有一个总文件包括其中所有的单个.c,比如BasicMathFunctions.c中

删除这些总的.c,避免编译重复

删除以下文件和所有的非.c和.h文件

1BasicMathFunctions:BasicMathFunctions.c,BasicMathFunctionsF16.c
2BayesFunctions:BayesFunctions.c,BayesFunctionsF16.c
3CommonTables:CommonTables.c,CommonTablesF16.c
4ComplexMathFunctions:ComplexMathFunctions.c,ComplexMathFunctionsF16.c
5ControllerFunctions:ControllerFunctions.c
6DistanceFunctions:DistanceFunctions.c,DistanceFunctionsF16.c
7FastMathFunctions:FastMathFunctions.c,FastMathFunctionsF16.c
8FilteringFunctions:FilteringFunctions.c,FilteringFunctionsF16.c
9InterpolationFunctions:InterpolationFunctions.c,InterpolationFunctionsF16.c
10MatrixFunctions:MatrixFunctions.c,MatrixFunctionsF16.c
11QuaternionMathFunctions:QuaternionMathFunctions.c
12StatisticsFunctions:StatisticsFunctions.c,StatisticsFunctionsF16.c
13SupportFunctions:SupportFunctions.c,SupportFunctionsF16.c
14SVMFunctions:SVMFunctions.c,SVMFunctionsF16.c
15TransformFunctions:TransformFunctions.c,TransformFunctionsF16.c,arm_bitreversal2.S


工程设置添加相关头文件包含路径

2.2测试

复制CMSIS_5\CMSIS\DSP\Examples\ARM\arm_fft_bin_example下的arm_fft_bin_data.c和arm_fft_bin_example_f32.c到自己的工程目录

arm_fft_bin_example_f32.c下的

int32_t main(void)改为int32_t ffttest_main(void)

并添加#define SEMIHOSTING以使能printf打印,我们已经重定向实现了printf打印到串口。

由于 arm_cfft_f32(&varInstCfftF32, testInput_f32_10khz, ifftFlag, doBitReverse);会修改testInput_f32_10khz的内容,所以添加一个缓存,以便能重复测试

1float32_t testtmp_f32_10khz[2048];
2  /* Process the data through the CFFT/CIFFT module */
3  memcpy(testtmp_f32_10khz,testInput_f32_10khz,sizeof(testInput_f32_10khz));
4  arm_cfft_f32(&varInstCfftF32, testtmp_f32_10khz, ifftFlag, doBitReverse);
5  /* Process the data through the Complex Magnitude Module for
6  calculating the magnitude at each bin */

7  arm_cmplx_mag_f32(testtmp_f32_10khz, testOutput, fftSize);

在自己的main函数中申明并调用

int32_t ffttest_main(void)

ffttest_main()

编译运行可以看到串口打印SUCCESS说明测试OK。

将输入输出数据打印

1 printf("SUCCESS\n");
2    for(int i=0; i 3    {
4        if(i2
)
5        {
6            printf("/*%f,%f*/\r\n", testInput_f32_10khz[i],testOutput[i]);
7        }
8        else
9        {
10            printf("/*%f,%f*/\r\n", testInput_f32_10khz[i],0.0);
11        }
12    }

使用serialstudio可视化显示,可以看到计算结果FFT频率明显的峰值


三、音频采集


3.1原理图

从原理图看到有6路模拟输入,分别对应

P10.0~P10.5, VREF为模拟参考电压。

使用的是MAX4466的MIC,接到ADC0,如下图所示

3.2配置模拟采集引脚

3.3代码

Adc.c

1#include "cy_pdl.h"
2#include "cyhal.h"
3#include "cybsp.h"
4#include "cy_retarget_io.h"
5#define VPLUS_CHANNEL_0  (P10_0)
6/* Conversion factor */
7#define MICRO_TO_MILLI_CONV_RATIO        (1000u)
8/* Acquistion time in nanosecond */
9#define ACQUISITION_TIME_NS              (116680u)
10/* ADC Scan delay in millisecond */
11#define ADC_SCAN_DELAY_MS                (200u)
12/*******************************************************************************
13*       Enumerated Types
14*******************************************************************************/

15/* ADC Channel constants*/
16enum ADC_CHANNELS
17{
18  CHANNEL_0 = 0,
19  NUM_CHANNELS
20} adc_channel;
21/*******************************************************************************
22* Global Variables
23*******************************************************************************/

24/* ADC Object */
25cyhal_adc_t adc_obj;
26/* ADC Channel 0 Object */
27cyhal_adc_channel_t adc_chan_0_obj;
28/* Default ADC configuration */
29const cyhal_adc_config_t adc_config = {
30        .continuous_scanning=false// Continuous Scanning is disabled
31        .average_count=1,           // Average count disabled
32        .vref=CYHAL_ADC_REF_VDDA,   // VREF for Single ended channel set to VDDA
33        .vneg=CYHAL_ADC_VNEG_VSSA,  // VNEG for Single ended channel set to VSSA
34        .resolution = 12u,          // 12-bit resolution
35        .ext_vref = NC,             // No connection
36        .bypass_pin = NC };       // No connection
37/* Asynchronous read complete flag, used in Event Handler */
38static bool async_read_complete = true;
39#define NUM_SCAN                    (1000)
40#define NUM_CHANNELS                (1)
41/* Variable to store results from multiple channels during asynchronous read*/
42int32_t result_arr[NUM_CHANNELS * NUM_SCAN] = {0};
43static void adc_event_handler(void* arg, cyhal_adc_event_t event)
44
{
45    if(0u != (event & CYHAL_ADC_ASYNC_READ_COMPLETE))
46    {
47        /* Set async read complete flag to true */
48        async_read_complete = true;
49    }
50}
51int adc_init(void)
52
{
53    /* Variable to capture return value of functions */
54    cy_rslt_t result;
55    /* Initialize ADC. The ADC block which can connect to the channel 0 input pin is selected */
56    result = cyhal_adc_init(&adc_obj, VPLUS_CHANNEL_0, NULL);
57    if(result != CY_RSLT_SUCCESS)
58    {
59        printf("ADC initialization failed. Error: %ld\n", (long unsigned int)result);
60        CY_ASSERT(0);
61    }
62    /* ADC channel configuration */
63    const cyhal_adc_channel_config_t channel_config = {
64            .enable_averaging = false,  // Disable averaging for channel
65            .min_acquisition_ns = ACQUISITION_TIME_NS, // Minimum acquisition time set to 1us
66            .enabled = true };          // Sample this channel when ADC performs a scan
67    /* Initialize a channel 0 and configure it to scan the channel 0 input pin in single ended mode. */
68    result  = cyhal_adc_channel_init_diff(&adc_chan_0_obj, &adc_obj, VPLUS_CHANNEL_0,
69                                          CYHAL_ADC_VNEG, &channel_config);
70    if(result != CY_RSLT_SUCCESS)
71    {
72        printf("ADC first channel initialization failed. Error: %ld\n", (long unsigned int)result);
73        CY_ASSERT(0);
74    }
75    /* Register a callback to handle asynchronous read completion */
76     cyhal_adc_register_callback(&adc_obj, &adc_event_handler, result_arr);
77     /* Subscribe to the async read complete event to process the results */
78     cyhal_adc_enable_event(&adc_obj, CYHAL_ADC_ASYNC_READ_COMPLETE, CYHAL_ISR_PRIORITY_DEFAULT, true);
79     printf("ADC is configured in multichannel configuration.\r\n\n");
80     printf("Channel 0 is configured in single ended mode, connected to the \r\n");
81     printf("channel 0 input pin. Provide input voltage at the channel 0 input pin \r\n");
82     return 0;
83}
84int adc_samp(void)
85
{
86    /* Variable to capture return value of functions */
87    cy_rslt_t result;
88    /* Variable to store ADC conversion result from channel 0 */
89    int32_t adc_result_0 = 0;
90        /* Clear async read complete flag */
91        async_read_complete = false;
92        /* Initiate an asynchronous read operation. The event handler will be called
93         * when it is complete. */

94        memset(result_arr,0,sizeof(result_arr));
95        cyhal_gpio_write_internal(CYBSP_USER_LED,true);
96        result = cyhal_adc_read_async_uv(&adc_obj, NUM_SCAN, result_arr);
97        if(result != CY_RSLT_SUCCESS)
98        {
99            printf("ADC async read failed. Error: %ld\n", (long unsigned int)result);
100            CY_ASSERT(0);
101        }
102        while(async_read_complete == false);
103        cyhal_gpio_write_internal(CYBSP_USER_LED,false);
104        /*
105         * Read data from result list, input voltage in the result list is in
106         * microvolts. Convert it millivolts and print input voltage
107         *
108         */

109        for(int i=0; i110        {
111            adc_result_0 = result_arr[i] / MICRO_TO_MILLI_CONV_RATIO;
112            printf("/*%4ld*/\r\n", (long int)adc_result_0);
113        }
114    return 0;
115}

Adc.h

1#ifndef ADC_H
2#define ADC_H
3int adc_init(void);
4int adc_samp(void);
5#endif

Main.c调用

adc_init();

adc_samp();

3.4时钟源

时钟源是100Mhz,12分频=8.33M,满足1.8MHz~18MHz之间的要求

默认是按照8M配置

3.5采样时间

采样前后翻转LED用示波器测量时间

1int adc_samp(void)
2
{
3    /* Variable to capture return value of functions */
4    cy_rslt_t result;
5    /* Variable to store ADC conversion result from channel 0 */
6    int32_t adc_result_0 = 0;
7        /* Clear async read complete flag */
8        async_read_complete = false;
9        /* Initiate an asynchronous read operation. The event handler will be called
10         * when it is complete. */

11        memset(result_arr,0,sizeof(result_arr));
12        cyhal_gpio_write_internal(CYBSP_USER_LED,true);
13        result = cyhal_adc_read_async_uv(&adc_obj, NUM_SCAN, result_arr);
14        if(result != CY_RSLT_SUCCESS)
15        {
16            printf("ADC async read failed. Error: %ld\n", (long unsigned int)result);
17            CY_ASSERT(0);
18        }
19        while(async_read_complete == false);
20        cyhal_gpio_write_internal(CYBSP_USER_LED,false);
21        /*
22         * Read data from result list, input voltage in the result list is in
23         * microvolts. Convert it millivolts and print input voltage
24         *
25         */

26        for(int i=0; i27        {
28            adc_result_0 = result_arr[i] / MICRO_TO_MILLI_CONV_RATIO;
29            printf("/*%4ld*/\r\n", (long int)adc_result_0);
30        }
31    return 0;
32}

采样1000次,分别设置采样时间为2uS和1uS对比。

#define ACQUISITION_TIME_NS (2000u)

10.28mS

#define ACQUISITION_TIME_NS (1000u)

9.32mS

10.28-9.32=0.96mS 1000次约1mS,1次刚好是1uS。

而1000次除去采样时间其他时间为8.32mS,即一次8.32uS。

因为前面设置了时钟为8.33MHz, 从前面时序一节可以看到,除去采样时间,其他转换时间等需要14个CLK,所以需要14/8.33uS=1.7uS. 剩余的8.32-1.7为数据搬运,软件处理等时间。

3.6 采样值正确性

1.545V和示波器采集为1.54V差不多是正确的,这里没有高精度的万用表就不对测试精度了,只测试了正确性。

3.7音频采集

一次采集1000次然后串口打印,使用SerialStudio可视化显示

1int adc_samp(void)
2
{
3    /* Variable to capture return value of functions */
4    cy_rslt_t result;
5    /* Variable to store ADC conversion result from channel 0 */
6    int32_t adc_result_0 = 0;
7        /* Clear async read complete flag */
8        async_read_complete = false;
9        /* Initiate an asynchronous read operation. The event handler will be called
10         * when it is complete. */

11        memset(result_arr,0,sizeof(result_arr));
12        cyhal_gpio_write_internal(CYBSP_USER_LED,true);
13        result = cyhal_adc_read_async_uv(&adc_obj, NUM_SCAN, result_arr);
14        if(result != CY_RSLT_SUCCESS)
15        {
16            printf("ADC async read failed. Error: %ld\n", (long unsigned int)result);
17            CY_ASSERT(0);
18        }
19        while(async_read_complete == false);
20        cyhal_gpio_write_internal(CYBSP_USER_LED,false);
21        /*
22         * Read data from result list, input voltage in the result list is in
23         * microvolts. Convert it millivolts and print input voltage
24         *
25         */

26        for(int i=0; i27        {
28            adc_result_0 = result_arr[i] / MICRO_TO_MILLI_CONV_RATIO;
29            printf("/*%4ld*/\r\n", (long int)adc_result_0);
30        }
31    return 0;
32}


四、信号处理前端


4.1 电能质量,谐波分析

4.1.1添加命令行

在电能检测应用中,电能质量一项分析即谐波分析,谐波分量大,说明电能质量不好,

基于本板信号处理前端也实现了该功能。

shell_fun.h

1void FftFun(void* param);

shell_fun.c

1include "fft.h"

shell_cmd_list中添加一行

1 { (const uint8_t*)"fft",         FftFun,           "fft"},                 /*打印帮助信息*/

添加命令执行函数

1void FftFun(void* param)
2
{
3    fft_main();
4}


4.1.2添加实现

Fft.c

1#include "arm_math.h"
2#include "arm_const_structs.h"
3#include 
4#define TEST_LENGTH_SAMPLES 2048
5extern float32_t testInput_f32_10khz[TEST_LENGTH_SAMPLES];
6static float32_t testOutput[TEST_LENGTH_SAMPLES/2];
7static uint32_t fftSize = 1024;
8static uint32_t ifftFlag = 0;
9static uint32_t doBitReverse = 1;
10static arm_cfft_instance_f32 varInstCfftF32;
11static int testIndex = 0;
12static float testtmp_f32_10khz[2048];
13static int32_t adcbuffer[2048];
14int32_t fft_main(void)
15{
16  arm_status status;
17  float32_t maxValue;
18  status = ARM_MATH_SUCCESS;
19  status=arm_cfft_init_f32(&varInstCfftF32,fftSize);
20  //memcpy(testtmp_f32_10khz,testInput_f32_10khz,sizeof(testInput_f32_10khz));
21  adc_samp(adcbuffer,2048);
22  for(int i=0; i<2048;i ++)
23  {
24      testtmp_f32_10khz[i] = (float)adcbuffer[i];
25  }
26  arm_cfft_f32(&varInstCfftF32, testtmp_f32_10khz, ifftFlag, doBitReverse);
27  arm_cmplx_mag_f32(testtmp_f32_10khz, testOutput, fftSize);
28  /* Calculates maxValue and returns corresponding BIN value */
29  arm_max_f32(testOutput, fftSize, &maxValue, &testIndex);
30  int32_t out = 0;
31  for(int i=0; i32  {
33      if(i>TEST_LENGTH_SAMPLES/2)
34      {
35          out = testOutput[i-TEST_LENGTH_SAMPLES/2]/1024;
36      }
37      else
38      {
39          out = testOutput[i]/1024;
40      }
41      printf("/*%ld,%ld*/\r\n", adcbuffer[i],out);
42  }
43}
44 /** \endlink */

Fft.h

1#ifndef FFT_H
2#define FFT_H
3int fft_main(void);
4#endif

测试

4.2 周期(频率),幅值,相位分析

4.2.1 原理

FFT变换结果,幅值最大的横坐标对应信号频率,纵坐标对应幅度。幅值最大的为out[m]=val;则信号频率f0=(Fs/N)m ,信号幅值Vpp=val/(N/2)。N为FFT的点数,Fs为采样频率。相位Pha=atan2(a, b)弧度制,其中ab是输出虚数结果的实部和虚部。

4.2.2添加命令行

shell_fun.h

1void FrqFun(void* param);

shell_fun.c

include "frq.h"

shell_cmd_list中添加一行

1{ (const uint8_t*)"frt",         FrqFun,           "frq"},

添加命令执行函数

1void FrqFun(void* param)
2
{
3    Frq_main();
4}

4.2.3实现代码

Frq.c

1#include "arm_math.h"
2#include "arm_const_structs.h"
3#include 
4#define TEST_LENGTH_SAMPLES 2048
5#define FS 10000
6extern float32_t testInput_f32_10khz[TEST_LENGTH_SAMPLES];
7static float32_t testOutput[TEST_LENGTH_SAMPLES/2];
8static uint32_t fftSize = 1024;
9static uint32_t ifftFlag = 0;
10static uint32_t doBitReverse = 1;
11static arm_cfft_instance_f32 varInstCfftF32;
12static int testIndex = 0;
13static float testtmp_f32_10khz[2048];
14static int32_t adcbuffer[2048];
15int32_t frq_main(void)
16{
17  arm_status status;
18  float32_t maxValue;
19  status = ARM_MATH_SUCCESS;
20  status=arm_cfft_init_f32(&varInstCfftF32,fftSize);
21  //memcpy(testtmp_f32_10khz,testInput_f32_10khz,sizeof(testInput_f32_10khz));
22  adc_samp(adcbuffer,2048);
23  for(int i=0; i<2048;i ++)
24 {
25      testtmp_f32_10khz[i] = (float)adcbuffer[i];
26  }
27  arm_cfft_f32(&varInstCfftF32, testtmp_f32_10khz, ifftFlag, doBitReverse);
28  arm_cmplx_mag_f32(testtmp_f32_10khz, testOutput, fftSize);
29  /* Calculates maxValue and returns corresponding BIN value */
30  arm_max_f32(testOutput, fftSize, &maxValue, &testIndex);
31  float freq = (FS/TEST_LENGTH_SAMPLES)*testIndex;
32  float vpp = maxValue/(TEST_LENGTH_SAMPLES/2);
33  float pha = atan2(testOutput[2*testIndex],testOutput[2*testIndex+1]);
34  printf("freq=%f,vpp=%f,pha=%f\r\n",freq,vpp,pha);
35}
36 /** \endlink */

Frq.h

1#ifndef FRQ_H
2#define FRQ_H
3int frq_main(void);
4#endif

4.2.4测试

输入frq开始测试印如下

实时采集测试

此时采集的是音频背景声,噪声很小,所以频率为0

4.3数字滤波信号前端

4.3.1原理

CMSIS-DSP提供直接I型IIR库支持Q7,Q15,Q31和浮点四种数据类型。其中Q15和Q31提供了快速版本。

直接I型IIR滤波器是基于二阶Biquad级联的方式来实现的。每个Biquad由一个二阶的滤波器组成:

y[n] = b0 x[n] + b1 x[n-1] + b2 x[n-2] + a1 y[n-1] + a2 * y[n-2]

直接I型算法每个阶段需要5个系数和4个状态变量。

matlab使用上面的公式实现,在使用fdatool工具箱生成的a系数需要取反才能用于直接I型IIR滤波器的函数中。

高阶IIR滤波器的实现是采用二阶Biquad级联的方式来实现的。其中参数numStages就是用来做指定二阶Biquad的个数。比如8阶IIR滤波器就可以采用numStages=4个二阶Biquad来实现。

如果要实现9阶IIR滤波器就需要将numStages=5,这时就需要其中一个Biquad配置成一阶滤波器(也就是b2=0,a2=0)。

4.3.2添加命令行

shell_fun.h

void IirFun(void* param);

shell_fun.c

1include "iir.h"

shell_cmd_list中添加一行

1  { (const uint8_t*)"iir",         IirFun,           “iir"},

添加命令执行函数

1void IirFun(void* param)
2
{
3    Iir_main();
4}

4.3.3实现代码

Iir.c

1#include "arm_math.h"
2#include "arm_const_structs.h"
3#include 
4#define TEST_LENGTH_SAMPLES 2048
5#define FS 10000
6extern float32_t testInput_f32_10khz[TEST_LENGTH_SAMPLES];
7static float32_t testOutput[TEST_LENGTH_SAMPLES];
8static uint32_t fftSize = 1024;
9static uint32_t ifftFlag = 0;
10static uint32_t doBitReverse = 1;
11static arm_cfft_instance_f32 varInstCfftF32;
12static int testIndex = 0;
13static float testtmp_f32_10khz[2048];
14static int32_t adcbuffer[2048];
15#define numStages  2                /* 2阶IIR滤波的个数 */
16#define BLOCK_SIZE           128    /* 调用一次arm_biquad_cascade_df1_f32处理的采样点个数 */
17uint32_t blockSize = BLOCK_SIZE;
18uint32_t numBlocks = TEST_LENGTH_SAMPLES/BLOCK_SIZE;      /* 需要调用arm_biquad_cascade_df1_f32的次数 */
19static float32_t IIRStateF32[4*numStages];                      /* 状态缓存 */
20/* 巴特沃斯低通滤波器系数 80Hz*/
21const float32_t IIRCoeffs32LP[5*numStages] = {
22    1.0f,  2.0f,  1.0f,  1.479798894397216679763573665695730596781f,
23-0.688676953053861784503908438637154176831f,
24    1.0f,  2.0f,  1.0f,  1.212812092620218384908525877108331769705f,
25-0.384004162286553540894828984164632856846f
26};
27int32_t iir_main(void)
28{
29    uint32_t i;
30    arm_biquad_casd_df1_inst_f32 S;
31    float32_t ScaleValue;
32    float32_t  *inputF32, *outputF32;
33    /* 初始化输入输出缓存指针 */
34    //memcpy(testtmp_f32_10khz,testInput_f32_10khz,sizeof(testInput_f32_10khz));
35#if 1
36    adc_samp(adcbuffer,2048);
37    for(int i=0; i<2048;i ++)
38   {
39        testtmp_f32_10khz[i] = (float)adcbuffer[i];
40    }
41#endif
42    inputF32 = testtmp_f32_10khz;
43    outputF32 = testOutput;
44    /* 初始化 */
45    arm_biquad_cascade_df1_init_f32(&S, numStages, (float32_t *)&IIRCoeffs32LP[0],
46(float32_t *)&IIRStateF32[0]);
47    /* 实现IIR滤波,这里每次处理1个点 */
48    for(i=0; i < numBlocks; i++)
49    {
50        arm_biquad_cascade_df1_f32(&S, inputF32 + (i * blockSize),  outputF32 + (i * blockSize),
51  blockSize);
52    }
53    /*放缩系数 */
54    ScaleValue = 0.012f0.42f;
55    /* 打印滤波后结果 */
56    for(i=0; i57    {
58        printf("/*%f, %f*/\r\n", testtmp_f32_10khz[i], testOutput[i]*ScaleValue);
59    }
60}
61 /** \endlink */

Iir.h

1#ifndef IIR_H
2#define IIR_H
3int iir_main(void);
4#endif

4.3.4测试

输入iir回车,查看波形

见视频

以下可以看到滤波导致了滞后,黄色线有滞后

以下是实时采集滤波

4.4 极大值检测

在电力等行业,分析电压极值,是一项重要的参数分析,可以分析电压的波动;示波器中也有自动测量极值的功能更。本板作为信号处理前端也实现了该功能。

4.4.1 算法

算法来源于论文 https://www.mdpi.com/1999-4893/5/4/588/htm

核心代码如下

1void ampd(int32_t* data, int32_t len)
2{
3    int row_sum;
4    for(int k=1; k<len/2+1; k++)
5    {
6        row_sum = 0;
7        for(int i=k; i<len-k; i++)
8        {
9            if((data[i] > data[i - k]) && (data[i] > data[i + k]))
10            {
11                row_sum -= 1;
12            }
13        }
14        arr_rowsum[k-1] = row_sum;
15    }
16    int min_index = argmin(arr_rowsum,len/2+1);
17     max_window_length = min_index;
18    for(int k=1; k1
; k++)
19    {
20        for(int i=k; i<len - k; i++)
21        {
22            if((data[i] > data[i - k]) && (data[i] > data[i + k]))
23            {
24                p_data[i] += 1;
25            }
26        }
27    }
28    for(int k=0; k<len; k++)
29    {
30        if(p_data[k] == max_window_length)
31        {
32            /* 极大值 */
33        }
34    }
35}

4.4.2 添加命令行

1  { (const uint8_t*)"max",         MaxFun,           "max"},                 /*打印帮助信息*/
2void MaxFun(void* param)
3
{
4    max_test();
5}
6void MaxFun(void* param);

测试代码如下,串口命令行输入命令max,开始采集ADC值,并计算极值,打印到PC串口通过seraistudio可视化显示

1int max_test(void)
2
{
3    for(int i=0; i<10; i++)
4    {
5        memset(p_data,0,sizeof(p_data));
6        //adc_samp(sim_data_buffer,1000);
7        sim_data();
8        ampd(sim_data_buffer, sizeof(sim_data_buffer)/sizeof(sim_data_buffer[0]));
9        for(int k=0; k<sizeof(sim_data_buffer)/sizeof(sim_data_buffer[0]); k++)
10        {
11            if(p_data[k] == max_window_length)
12            {
13                /* 极大值 */
14                printf("/*%ld,%ld*/\r\n",sim_data_buffer[k],sim_data_buffer[k]);
15            }
16            else
17            {
18                printf("/*%ld,%d*/\r\n",sim_data_buffer[k],0);
19            }
20            cyhal_system_delay_ms(10);
21        }
22    }
23    return 0;
24}

4.4.3 测试

效果如下IN是原始数据,MAX是检测到的极大值,如果检测极小值将原始数据取反即可。

检测语音,效果如下


五、总结


得益于开发板出色的处理性能,和外设性能,以及官方可视化的代码配置工具,可以方便的搭建开发环境,实现外设采集信号比如ADC,移植DSP库,实现各种算法。本Demo实现了谐波分析,周期幅值相位分析,数字滤波,极大值检测等功能,是一个小的工具集,还可以继续扩展,设计了人机交互命令行,方便实用和测试,具备一定实用价值。


———————End——————




👇 点击阅读原文进入官网

RTThread物联网操作系统 帮助您了解RT-Thread相关的资讯.
评论 (0)
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 68浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 77浏览
  • 一、温度计不准的原因温度计不准可能由多种原因导致,如温度计本身的质量问题、使用环境的变化、长时间未进行校准等。为了确保温度计的准确性,需要定期进行校准。二、校准前准备工作在进行温度计校准之前,需要做好以下准备工作:1. 选择合适的校准方法和设备,根据温度计的型号和使用需求来确定。2. 确保校准环境稳定,避免外部因素对校准结果产生影响。3. 熟悉温度计的使用说明书和校准流程,以便正确操作。三、温度计校准方法温度计校准方法一般分为以下几步:1. 将温度计放置在
    锦正茂科技 2025-03-31 10:27 54浏览
  • 在环保与经济挑战交织的当下,企业如何在提升绩效的同时,也为地球尽一份力?普渡大学理工学院教授 查德·劳克斯(Chad Laux),和来自 Maryville 大学、俄亥俄州立大学及 Trine 大学的三位学者,联合撰写了《精益可持续性:迈向循环经济之路(Lean Sustainability: Creating a Sustainable Future through Lean Thinking)》一书,为这一问题提供了深刻的答案。这本书也荣获了 国际精益六西格玛研究所(IL
    优思学院 2025-03-31 11:15 75浏览
  • 北京贞光科技有限公司作为紫光同芯产品的官方代理商,为客户提供车规安全芯片的硬件、软件SDK销售及专业技术服务,并且可以安排技术人员现场支持客户的选型和定制需求。在全球汽车电子市场竞争日益激烈的背景下,中国芯片厂商正通过与国际领先企业的深度合作,加速融入全球技术生态体系。近日,紫光同芯与德国HighTec达成的战略合作标志着国产高端车规芯片在国际化道路上迈出了关键一步,为中国汽车电子产业的发展注入了新的活力。全栈技术融合:打造国际化开发平台紫光同芯与HighTec共同宣布,HighTec汽车级编译
    贞光科技 2025-03-31 14:44 86浏览
  • 升职这件事,说到底不是单纯靠“干得多”或者“喊得响”。你可能也看过不少人,能力一般,甚至没你努力,却升得飞快;而你,日复一日地拼命干活,升职这两个字却始终离你有点远。这种“不公平”的感觉,其实在很多职场人心里都曾经出现过。但你有没有想过,问题可能就藏在一些你“没当回事”的小细节里?今天,我们就来聊聊你升职总是比别人慢,可能是因为这三个被你忽略的小细节。第一:你做得多,但说得少你可能是那种“默默付出型”的员工。项目来了接着干,困难来了顶上去,别人不愿意做的事情你都做了。但问题是,这些事情你做了,却
    优思学院 2025-03-31 14:58 76浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 108浏览
  •        在“软件定义汽车”的时代浪潮下,车载软件的重要性日益凸显,软件在整车成本中的比重逐步攀升,已成为汽车智能化、网联化、电动化发展的核心驱动力。车载软件的质量直接关系到车辆的安全性、可靠性以及用户体验,因此,构建一套科学、严谨、高效的车载软件研发流程,确保软件质量的稳定性和可控性,已成为行业共识和迫切需求。       作为汽车电子系统领域的杰出企业,经纬恒润深刻理解车载软件研发的复杂性和挑战性,致力于为O
    经纬恒润 2025-03-31 16:48 54浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 110浏览
  • 在不久前发布的《技术实战 | OK3588-C开发板上部署DeepSeek-R1大模型的完整指南》一文中,小编为大家介绍了DeepSeek-R1在飞凌嵌入式OK3588-C开发板上的移植部署、效果展示以及性能评测,本篇文章不仅将继续为大家带来关于DeepSeek-R1的干货知识,还会深入探讨多种平台的移植方式,并介绍更为丰富的交互方式,帮助大家更好地应用大语言模型。1、移植过程1.1 使用RKLLM-Toolkit部署至NPURKLLM-Toolkit是瑞芯微为大语言模型(LLM)专门开发的转换
    飞凌嵌入式 2025-03-31 11:22 181浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 103浏览
  • 在智能语音交互设备开发中,系统响应速度直接影响用户体验。WT588F系列语音芯片凭借其灵活的架构设计,在响应效率方面表现出色。本文将深入解析该芯片从接收指令到音频输出的全过程,并揭示不同工作模式下的时间性能差异。一、核心处理流程与时序分解1.1 典型指令执行路径指令接收 → 协议解析 → 存储寻址 → 数据读取 → 数模转换 → 音频输出1.2 关键阶段时间分布(典型值)处理阶段PWM模式耗时DAC模式耗时外挂Flash模式耗时指令解析2-3ms2-3ms3-5ms存储寻址1ms1ms5-10m
    广州唯创电子 2025-03-31 09:26 185浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦