【世说设计】具有高电磁兼容性(EMC)性能的精密温度测量系统设计参考

Excelpoint世健 2023-10-11 09:00

本文将讨论精密温度测量系统的设计考虑因素,以及如何在保持测量精度的同时提高系统的EMC性能。我们将以RTD温度测量为例介绍测试结果和数据分析,以便我们能够轻松地从概念开发出原型和产品并走向市场。




精密温度测量和EMC挑战


温度测量是模拟领域中最常用的一项检测技术。许多测量技术可用来检测环境温度。热敏电阻是一种小尺寸且简单的2线制方案,具有快速响应时间,但其非线性和有限的温度范围限制了其精度和应用。RTD是最稳定、最精确的温度测量方法。RTD设计的难点在于需要外部激励、复杂电路和校准。没有温度测量系统开发经验的工程师可能会气馁。热电偶(TC)可以提供坚固耐用、便宜、不同测量范围的解决方案,但完整的热电偶测温系统需要冷端补偿(CJC)。与热敏电阻、TC和RTD相比,新型的数字温度传感器可以直接通过数字接口提供校准的温度数据。精密温度测量需要高精度温度传感器和精密信号链来构成一个温度测量系统。TC、RTD和数字温度传感器的精度最高。精密信号链器件是可以获得的,可用来收集这些传感器信号并将其转换为绝对温度。在工业领域,达到0.1°C的精度是我们的目标。这种精度测量不包括传感器误差。表1比较了不同类型的温度传感器。


表1. 不同类型温度传感器的比较


创建数字温度测量系统时,特别是针对工业和铁路等恶劣环境中的应用时,不仅要关注精度和设计难度,EMC性能也是保持系统稳定的关键特性。系统需要额外的电路和分立器件以提高EMC性能。但是,更多的保护器件意味着更多的误差源。因此,设计具有高检测精度和高EMC性能的温度测量系统是非常具有挑战性的。温度测量系统的EMC性能决定其能否在指定的电磁环境中正常工作。


ADI公司提供各种温度测量解决方案,例如精密模数转换器(ADC)、模拟前端(AFE)、IC温度传感器等。ADI AFE解决方案提供多传感器高精度数字温度测量系统,支持直接TC测量、直接RTD测量、直接热敏电阻测量和定制传感器应用。当增加EMC保护器件时,一些特殊配置可以帮助保持高测量精度。图1显示了经典比率式温度测量电路和计算公式。


图 1. 经典比率式温度测量电路和计算公式


以下部分介绍了温度检测解决方案,以便系统设计人员能够实现出色的EMC性能。


RTD温度测量解决方案


以 LTC2983 温度测量AFE为例。系统控制器可以通过SPI接口直接从LTC2983读取校准的温度数据,精度为0.1°C,分辨率为0.001°C。连接4线RTD时,激励电流旋转功能可以自动消除热电偶的寄生效应,并降低信号电路漏电流的影响。基于这些特性,LTC2983可以加速多通道精密温度测量系统的设计,实现高EMC性能而无需复杂的电路设计,让您和您的客户更有信心。图2显示了EMC保护的LTC2983温度测量系统框图。


图 2. EMC 保护的 LTC2983 温度测量系统


RTD无疑是高精度温度测量的出色选择,可以测量-200°C至+800°C范围内的温度。100Ω和1000Ω铂RTD最常见,但也可以由镍或铜制成。


最简单的RTD温度测量系统是2线配置,但引线电阻会引入额外的系统温度误差。将两个匹配的电流源施加到RTD(引线电阻应相等),3线配置便可消除引线电阻误差。利用高阻抗开尔文检测直接测量传感器,开尔文配置或4线配置便可消除平衡或不平衡的引线电阻。然而,成本将是4线配置的主要障碍,因为其需要更多电缆,特别是针对远距离温度测量。图3显示了不同的RTD接线配置。考虑到实际的客户用例,本文选择了3线RTD配置并测试其EMC性能。


图 3. 不同 RTD 接线配置:

(a) 2 线,(b) 3 线,(c) 4 线


2线和3线RTD传感器还可以在PCB上使用开尔文配置。当需要将限流电阻和RC滤波器添加到信号链路以保护器件的模拟输入引脚时,这些额外的电阻会引入很大的系统失调。例如,用4线开尔文配置取代2线保护电路可以帮助消除该失调,因为激励电流不会流过这些限流电阻和RC滤波器,保护电阻引起的误差可以忽略不计(参见图4)。欲了解更多信息,请参阅 LTC2986数据手册。


图 4. 4 线配置消除额外的电阻误差


温度测量系统的稳健性挑战


与大多数温度测量IC一样,LTC2983可以耐受2 kV HBM ESD电平。但在工业自动化、铁路和其他苛刻电磁环境中,电子器件需要面对更高的干扰电平和更复杂的EMC事件,例如静电放电(ESD)、电快速瞬变(EFT)、辐射敏感性(RS)、传导敏感性(CS)和浪涌等。为了降低下游设备遭到损坏的风险并提高系统的鲁棒性,额外的分立保护器件是必要的。

EMC事件的三要素是噪声源、耦合路径和接收器。如图5所示,在该温度测量系统中,噪声源来自周围环境。耦合路径是传感器电缆,LTC2983是接收器。工业自动化和铁路应用总是使用长传感器电缆来检测远程器件的温度。传感器电缆的长度可以是数米甚至数十米。较长的电缆导致耦合路径更大,温度测量系统面临更严重的EMI挑战。


图 5. 温度测量系统的 EMI 事件的三要素


采用TVS的系统级保护解决方案


瞬变电压抑制器(TVS)和限流电阻是最常见的保护器件。选择合适的TVS和限流电阻不仅可以提高系统稳健性,还能保持系统的高测量性能。表2显示了TVS器件的主要参数,包括工作峰值反向电压、击穿电压、最大箝位电压和最大反向漏电流。工作峰值反向电压必须高于最大传感器信号,以确保系统正常工作。击穿电压不应比信号电压高很多,以避免产生很宽的无保护电压范围。最大箝位电压决定TVS可以抑制的最大干扰信号电压。反向漏电流会对系统贡献很大的测量误差,因此应选择反向漏电流尽可能小的TVS。


表2. TVS主要参数

正常工作条件下,TVS器件表现出很高的对地阻抗。将一个大于TVS击穿电压的瞬变电压施加于系统输入端时,一旦TVS被击穿,输入端电压就会被箝位并提供低阻抗接地路径,将瞬变电流从输入端转移到地。

图2所示为3线PT-1000保护电路。3线PT-1000通过三个相邻通道连接到LTC2983,其受到SMAJ5.0A TVS和100Ω限流电阻的保护。限流电阻和下游电容形成低通滤波器,以尽可能多地消除输入线路中的RF成分,使每条线路和地之间的交流信号保持平衡,并在测量带宽上维持足够高的输入阻抗以避免加载信号源。差分模式滤波器的-3 dB带宽为7.9 kHz,共模滤波器的-3 dB带宽为1.6 MHz。

该温度测量系统依据IEC 61000-4-2、IEC 61000-4-3、IEC 61000-4-4、IEC 61000-4-5和IEC 61000-4-6标准进行了测试。在这些测试下,系统必须正常工作并提供精确的温度测量。被测传感器是B类3线PT-1000,其使用约10 m长的屏蔽线。

表3列出了IEC 61000-4-x抗扰度测试项目、测试电平和系统受EMI事件干扰时的温度波动。图6显示了测试时的输出温度数据曲线,其对应于表3中的最大温度波动。


表3. EMI测试结果


增加保护后的温度测量精度


TVS和限流电阻有助于保护温度测量系统不受EMC影响。箝位电压越低的TVS,越能保护敏感电路。但反过来,它们可能产生系统误差。为了应对这种情况,我们必须使用具有更高击穿电压的TVS,因为更高的击穿电压意味着在正常工作电压下漏电流更少。TVS漏电流越低,则给系统增加的误差越小。


图 6. 测试时的输出温度数据曲线
表4. Littelfuse SMAJ5.0A TVS的电气特性

考虑这些因素,我们使用了一个Littelfuse SMAJ5.0A TVS(可以在大多数电子元器件经销商那里买到)和一个精度为±0.1%的100Ω限流电阻来保护系统,避免引入任何显著的测量误差。

为了实现高测量精度,我们使用精密电阻矩阵来替换PT-1000传感器并模拟温度变化。该精密电阻矩阵已利用Keysight Technologies 3458A万用表进行了校准。

为了减轻消除匹配引线电阻误差的困难,我们使用线配置来评估系统的精度性能。这更有利于消除传感器误差。

为了更准确地计算系统误差,我们需要使用与LTC2983相同的标准将电阻值转换为温度。传感器制造商发布的温度查找表是最准确的转换方法。但是,将每个温度点写入处理器的存储器中是不明智的。因此,我们使用以下公式来计算温度结果。

当T > 0°C时,公式为:


计算对应于电阻值的温度:


当T ≤ 0°C时,公式为:


温度通过多项式拟合得到:


其中:
T为RTD温度(°C)。
RRTD(T)为RTD电阻(Ω)。
R0 为RTD在0°C时的电阻(R0 = 1000 Ω)。
A = 3.9083 × 10–3
B = –5.775 × 10–7
C = –4.183 × 10–12

图7显示,在-134°C至+607°C的温度范围内,总系统误差不超过±0.4°C。与图9(显示了LTC2983对RTD温度测量的误差贡献)相比,附加保护器件增加了大约±0.3°C的系统误差,尤其是TVS漏电流。可以看到,随着温度升高,系统误差增加。这就涉及到TVS的I-V曲线特性。系统误差可计算如下


其中:
Terror 为LTC2983温度测量系统的总输出误差(°C)。
Tcal 为利用精密电阻计算的温度(°C),已利用Keysight Technologies 3458A进行校准。
TLTC2983 是LTC2983输出温度(°C)。

图8说明,系统总峰峰值噪声不超过±0.01°C,此结果符合数据手册规格。

图 7. 系统误差与温度的关系
图 8. 系统峰峰值噪声与温度的关系
图 9. LTC2983 对 RTD 温度测量的误差贡献

10. 激励电流旋转配置:

(a) 正向激励流,(b) 反向激励流


TVS误差贡献和优化配置


TVS的I-V曲线特性可以从器件的数据手册中找到。然而,大多数TVS制造商仅提供器件参数的典型值,而不是计算TVS在特定电压下的误差贡献(尤其是漏电流误差)所需的全部I-V数据。

本应用中使用Littelfuse SMAJ5.0A TVS。测试一些样品之后,我们发现漏电流在1 V反向电压约为1μA,远小于TVS数据手册给出的最大反向漏电流。这种漏电流会产生重大系统误差。但是,如果使能LTC2983的激励电流旋转,则会大大减少漏电流误差效应。图10显示了激励电流旋转配置和TVS漏电流流动。

当Rsense与流过RTD的激励电流相同时,RTD的电阻RT可以表示为:


当对正向激励流使用激励电流旋转配置时(如图10(a)所示),RTD电阻RRTD1计算如下:




其中:
Rsense 为检测电阻的实际电阻值
RRTD 为测量周期中RTD的实际电阻值
Vsense1 为检测电阻处的实测电压值
VRTD1 为正向激励流周期中RTD的实测电压值,如图10(a)所示。
RRTD1 为正向激励流周期中RTD的计算值

当对反向激励流使用激励电流旋转配置时(如图10(b)所示),RTD电阻RRTD2计算如下:




其中:
Vsense2 为检测电阻的实测电压值。
VRTD2 为反向激励流周期中RTD的实测电压值,如所示图10(b)所示。
RRTD2 为反向激励流周期中RTD的计算值

根据TVS测量数据,在2 V反向电压下,最大漏电流和最小漏电流之差平均约为10%。四个TVS的位置和匹配程度可能会引起相当大的系统误差。为了显示误差最大的情况,我们可以假设ITVS为平均漏电流, ITVS1 = ITVS2 = 0.9 × ITVS,而 ITVS3 = ITVS4 = 1.1 × ITVS




如果不使用激励电流旋转配置,RRTD1或RRTD2将包括最大TVS误差贡献。

为误差因子。
使用激励电流旋转配置时,最终计算结果为:





当Error(RRTDROT) = min {Error(RRTD1), Error(RRTD2)}时,Error (RRTDROT)将等于Error (RRTD1),或者Error(RRTDROT)将等于Error(RRTD2)。根据公式13至公式18,当Iexc = 6 ×ITVS,Error (RRTDROT)将等于min {Error(RRTD1), Error(RRTD2)}。当Iexc = 6 × ITVS时,由于TVS漏电流,系统的精度将会降低16.7%。


根据配置和测试结果,Iexc > 6 × ITVS,因此 Iexc > 100 × ITVS。图11显示了系统误差,其中:
RRTDROT为采用激励电流旋转时的最终RTD电阻计算结果。
Error(RRTDROT) 在使用激励电流旋转配置时的TVS误差贡献,单位为°C。
Error(RRTD1) 和 Error(RRTD2) 是不使用旋转配置时的TVS误差贡献,单位为°C。

上面的推导告诉我们,激励电流旋转配置可以减少TVS漏电流的误差贡献。以下测试结果证实了我们的断言。

图11显示了不同激励电流模式和TVS配置的系统误差。如图所示,当不使用TVS时,旋转和非旋转配置的系统精度大致相同。然而,使能激励电流旋转会自动消除寄生热电偶效应,对此的更详细说明请参阅 LTC2983数据手册。使用TVS保护系统时,总系统误差会增加。但是,激励电流旋转配置可以显著降低TVS漏电流的误差影响,从而有助于在大部分温度测量范围内实现与非TVS保护系统类似的精度水平。与没有TVS的系统相比,额外的误差是由TVS器件间差异贡献的。


图 11. 系统误差与不同硬件和软件配置的关系


结论


温度测量系统设计常被认为不是艰巨的任务。然而,对于大多数系统设计人员而言,开发高度精确且稳健的温度测量系统是一个挑战。LTC2983智能数字温度传感器可以帮助战胜这一挑战,开发出可以快速推向市场的产品。
  • 这种受保护的LTC2983温度测量系统具有±0.4°C的系统精度。测量误差包括LTC2983误差、TVS⁄限流电阻误差和PCB误差贡献。
  • LTC2983旋转激励电流配置可以显著减少保护器件的漏电流误差效应。
  • LTC2983温度测量系统可以在常见保护器件的加持下提供高EMC性能。有关EMI测试结果,请参阅表3。

本文给出了某些特定配置的精度和EMC性能测试结果。您可以选择不同的TVS器件和限流电阻来获得不同的测量精度和EMC性能,以满足您的生产需求。





原文转自亚德诺半导体



关注世健视频号,了解更多资讯




关于世健

亚太区领先的元器件授权代理商


世健(Excelpoint)是完整解决方案的供应商,为亚洲电子厂商包括原设备生产商(OEM)、原设计生产商(ODM)和电子制造服务提供商(EMS)提供优质的元器件、工程设计及供应链管理服务。多次被权威杂志和行业机构列入全球领先分销商榜单。


世健拥有超过35年历史,业务扩展至亚太区的49个城市和地区,目前在中国拥有十多家分公司和办事处。凭借专业的研发团队、顶尖的现场应用支持以及丰富的市场经验,世健在中国业内享有领先地位。






点击“阅读原文”,联系我们
↓↓↓

Excelpoint世健 世健系统(香港)有限公司是新加坡世健科技有限公司的子公司。作为亚太区领先的电子元器件分销商,世健为亚洲电子厂商,包括原设备生产商(OEM)、原设计生产商(ODM)和电子制造服务提供商(EMS)提供优质的元器件、工程设计及供应链管理服务。
评论
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 137浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 44浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 117浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 195浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 152浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 209浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 101浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 115浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 51浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 108浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 83浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 47浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦