谐振腔增强带间级联中红外发光二极管的研究

MEMS 2023-10-11 00:01

基于带间级联结构的中红外发光二极管(LED)器件以其高的输出功率和提取效率得到了越来越多的关注,并广泛用于气体探测器的中红外光源中。谐振腔结构也是提高中红外LED提取效率的一种有效方法。谐振腔发光二极管(RCLED)是通过将LED置于由两个分布式布拉格反射镜(DBR)组成的法布里-珀罗微腔(FP腔)内实现的。其增强原理是利用谐振腔的谐振效应,光波在谐振腔内来回反射形成驻波,抑制非谐振波长,使谐振波长的光尽可能多地从出射角范围内发射出来。谐振腔结构已经成功应用于可见光和近红外波段的LED,可以实现高达22%的提取效率。

据麦姆斯咨询报道,近期,国科大杭州高等研究院和中国科学院上海技术物理研究所的科研团队在《红外与毫米波学报》期刊上发表了以“谐振腔增强带间级联中红外发光二极管的研究”为主题的文章。该文章第一作者为张旺霖,主要从事带间级联光电子器件方面的研究工作;通讯作者为周易。

本文将带间级联结构和谐振腔结构结合起来一体化设计。通过对结构中DBR周期数、腔长、有源区位置等参数进行优化设计,得到了谐振腔LED输出功率、远场分布等性能参数,确定了最优的多级谐振腔带间级联LED结构。然后结合已生长的5级带间级联器件的测试结果,仿真了其生长谐振腔结构后主要性能参数的变化。

器件结构设计

器件的基本结构如图1(a)所示,其中带间级联LED的基本结构如下:InAs/GaAsSb超晶格材料为有源区,GaAsSb/AlAsSb超晶格材料为隧穿区,InAs/AlAsSb多量子阱材料为电子注入区,隧穿区和电子注入区同时作为电子和空穴势垒,阻挡载流子直接从一个有源区运动到另外一个有源区,增大辐射复合速率,详细结构见文献。将衬底完全去除,两侧分别生长金属Au与ZnS/Ge DBR形成谐振腔,Au在全波段拥有良好的全反射特性,所以将其当作谐振腔的底部反射镜;顶部DBR使用ZnS和Ge两种折射率相差较大的材料交替生长而成。通过调节带间级联LED各结构的厚度来调整腔长,从而调整谐振波长,同时与LED的自发辐射形成耦合。

CO₂气体探测器的红外光源需要4.2 μm的红外光源,本文以峰值波长为4.2 μm的RCLED为例,通过有限元方法进行计算仿真,分析谐振腔的设计参数对LED输出功率的影响。如图1(b),使用电偶极子放置在谐振腔内正中央来模拟LED的自发辐射,其自发辐射波长为4.2 μm。仿真区域为6×6 μm²,在外层加上完美匹配层用来模拟无限大的器件。带间级联LED的有源区为InAs/GaAsSb Ⅱ类超晶格材料,折射率为3.6,ZnS和Ge在中红外波段的折射率分别为2.2和4。

图1 结构示意图:(a)谐振腔带间级联LED结构示意图;(b)谐振腔LED仿真结构示意图

我们对无谐振腔结构的单级LED器件进行了仿真和对比。单个有源区被放置在一块半导体材料中,偶极子放在相同的位置,该结构的半导体材料下面添加一层完美匹配层,以模拟底部无限长的半导体的辐射。将该结构的辐射功率作为参考基准,定义一个参数辐射增强因子G(λ),表示特定波长下,只有一个偶极子作为光源时,有无谐振腔结构的器件输出功率之比:G(λ)=P(λ)/P₀(λ)。其中P(λ)为有谐振腔结构的LED输出功率,P₀(λ)为无谐振腔结构的LED输出功率。

结果和分析

本文仿真了DBR的周期数、谐振腔腔长、光源在腔中位置对谐振腔LED输出功率的影响,并确定了器件的相关参数。

DBR周期数对谐振腔LED输出功率的影响

DBR由ZnS/Ge周期性交叠生长而成,且每层膜的光学厚度均为λ/4,即:nHdH=λ/4,nLdL=λ/4。其中,nH、nL分别为两种材料的折射率,dH、dL分别为两种材料的厚度。DBR中心波长的反射率主要与材料折射率和DBR周期数有关。

不同周期数DBR会影响谐振腔上反射镜的反射率,从而改变谐振腔LED的辐射强度。图2(a)计算了DBR周期数从1至7时,DBR的中心波长反射率变化和腔长为λ/2的器件辐射增强因子G变化。可以看到,DBR的中心波长反射率会随着周期数的增大而增大,增大的幅度趋向缓慢。而器件的辐射增强因子会随着DBR周期数的增大而减小,在DBR周期数为1时,谐振腔的增强效果最好。

图2(a)腔长为λ/2时,DBR反射率和辐射增强因子G随DBR周期数的变化;(b)R1R2之间的关系

谐振腔腔长对谐振腔LED输出功率的影响

谐振腔的腔长会显著影响器件的纵模分布。通过仿真计算不同厚度条件下形成稳定谐振的纵模波长,使其谐振波长为4.2 μm。本文设计了腔阶m为1、2、3和4的四种结构,即腔长为λ/2、λ、3λ/2、2λ,得到这四种结构在谐振波长为4.2 μm时,谐振腔的腔长分别为0.578 μm、1.165 μm、1.754 μm和2.342 μm。图3给出了m=1和m=2两种结构的折射率以及电场分布。可以发现,在谐振腔内部,腔内电场强度波峰数量等于腔阶m。

图3 不同腔长下的谐振腔内部电场强度分布:(a)λ/2;(b)λ

图4(a)给出了腔阶m=2(即腔长为λ)时,谐振腔LED的输出功率随偶极子位置的变化图,可以看到,输出功率最大值时偶极子所在的位置与图3(b)中电场强度最大值的位置重合。因此,光源在电场强度波峰处可以使谐振腔的增强效果最大。四种结构的第一个波峰位置均在距离Au表面0.28 μm处,将偶极子放置在这个位置进行仿真,可以模拟出谐振腔结构对LED的增强作用。图4(b)给出了辐射增强因子随腔阶m的变化图,在谐振波长4.2 μm处,四种腔长结构的辐射增强因子分别为37.53、26.18、19.26和13.90。随着腔长的增加,辐射增强因子逐渐减小且辐射增强因子大小与腔阶m近似成反比。模式计数法可以在理论上解释这个规律。在理想的谐振腔中,提取效率为:η=1 m,提取效率与腔阶m成反比,所以在腔阶m=1,腔长为λ/2时提取效率最大,辐射增强因子也最大。由式(1)可以知道,在理想情况下,腔长最小为λ/2时,辐射增强因子最大。但这种情况下由于腔长太小,腔中的有源区和金属之间的距离很短,从偶极子到金属之间的非辐射性能量转移,会造成很大的损耗,导致腔阶m=1时的实际辐射增强因子会偏小。

图4 (a)腔长为λ时,谐振腔LED输出功率与偶极子在腔内位置的关系;(b)辐射增强因子G与腔阶m的关系

当m>1时,谐振腔内部的电场强度会存在多个波峰,而带间级联结构LED本身就有多个有源区,因此可以通过带间级联结构设计,调节各区域的厚度,使带间级联的每一级有源区均处于各个波峰处。例如腔阶为m的谐振腔LED结构,腔内部可以生长m级带间级联结构,这样就可以得到最大的输出功率。

通过仿真计算获得了四种腔长(m=1、2、3、4)的带间级联谐振腔结构总辐射增强因子。带间级联LED的有源区为非相干面源,腔阶m>1的结构中会有多个光源,将每个光源的输出功率都单独仿真计算最后进行相加。从图5中可以看到,当m=1时,在谐振波长处总辐射增强因子较小,为37.53。而当m>2时,在谐振波长处总辐射增强因子相近,约为55。腔阶m为1和2时,有源区和金属之间的距离很短,存在很大损耗,而当腔阶m为3时,损耗减小,辐射增强因子达到最大。继续增加级数总辐射增强因子不会增加,但会增加器件的厚度,导致器件的开启电压、串联电阻增大,损失发光效率。因此谐振腔增强的带间级联LED可以设计为3级,相比于不加谐振腔的单级结构,输出功率理论上可提高55倍。

图5还仿真了不同周期数DBR结构下的总辐射增强因子与腔长m的关系。从图5中的结果可以看到,DBR周期数为1时,总辐射增强因子是周期数为0(无DBR)结构的4倍左右。即在理论上,文献中的结构去掉衬底并生长上DBR形成谐振腔后,输出功率可以提高约4倍。而DBR周期数为2时,总辐射增强因子约为25,低于1个周期DBR结构的总辐射增强因子。

图5 不同DBR周期下,总辐射增强因子G与腔阶m的关系

谐振腔对LED辐射远场分布的影响

谐振腔可以调节LED的自发辐射的远场分布,让自发辐射光子的优先传播方向产生改变,从而使光辐射中心的角功率分布发生改变,让更多的光进入辐射立体角内,使其比无谐振腔结构具有更好的光束方向性。图6给出了腔长为3λ/2器件的发光波长为4.2 μm时,有无谐振腔结构的远场强度分布图,可以看到加谐振腔前器件辐射的光束发散角的半峰全宽为92°,而加谐振腔之后,器件辐射的光束发散角的半峰全宽减小为52°。

图6 远场强度分布:(a)无谐振腔;(b)有谐振腔

谐振腔对LED发光光谱的影响

前期生长并测试了5级的带间级联LED结构,在室温下,注入电流为100 mA时,峰值波长为4.39 μm,半峰宽为710 nm,器件的最大辐射达到0.73 W·cm⁻²·Sr⁻¹。结合该器件发光性能的测试结果,在加上谐振腔结构之后,考虑到实际器件存在波长展宽,图7给出了谐振腔结构的总辐射增强因子随波长分布以及RCLED 辐射光谱的仿真结果。RCLED有源区自发辐射出来的光子会被限制在谐振腔的光模(即谐振波长)中,其他波长的辐射会被抑制。在谐振波长处,总辐射增强因子达到最大,其他波长的辐射增强因子较小。通过仿真得到峰值波长的辐射功率可以提高11.7倍,全波段积分辐射功率可以提高5.43倍,器件的辐射波长半峰宽减小为110 nm,变窄了6.45倍。

图7 (a)辐射增强因子G随波长的分布;(b)300 K时,RCLED的辐射光谱

此外,使用本文的仿真计算模型,对已报道的谐振腔LED器件的结构参数进行仿真计算。如表1所示,峰值波长处的辐射增强因子的仿真结果为2.9,与文献报道中给出的测试结果有较高的吻合度,验证了仿真模型的准确性。

表1 已报道的RCLED器件仿真与测试值对比

结论

使用有限元分析的方法进行仿真,将带间级联结构与谐振腔的辐射增强特点结合起来,设计了谐振腔带间级联LED结构。仿真结果表示,用单个周期的ZnS/Ge DBR做为谐振腔上反射镜时,谐振腔的输出功率最大。当有源区置于谐振腔内部电场强度波峰处,谐振效应达到最大。谐振腔对单级LED的辐射增强效果与腔长成反比,但是在腔阶m为1和2时存在非辐射性能量转移导致的损耗,会降低谐振腔的增强效果。结合带间级联结构的多个有源区,当级联级数为3时,其总辐射增强因子达到最大,继续增加级数总辐射增强因子不会增加。因此使用3级谐振腔带间级联结构为最优的设计方案,此时输出功率能增加18.3倍,达到约55级无谐振腔带间级联LED输出功率。同时,谐振腔能使LED辐射的光束发散角从92°减小到52°。针对前期已制备的5级带间级联LED器件,在增加谐振腔结构之后,通过仿真可以使得峰值波长辐射功率增强约11.7倍,全波段积分辐射可以增强约5.43倍,光谱半峰宽变窄6.45倍。设计的谐振腔带间级联LED结构具有高辐射功率、窄光谱线宽、小的光束发散角等特点,在气体传感器的红外光源的应用中具有广泛的应用前景。

这项研究获得国家自然科学基金(61904183、61974152、62104237、62004205)、中国科学院青年创新促进会会员资助(Y202057)、上海市科技启明星计划(20QA1410500)和上海市扬帆计划(21YF1455000)的资助和支持。

论文链接:

http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023052

延伸阅读:

《带间级联激光器和量子级联激光器技术及市场-2021版》

《VCSEL专利态势分析-2022版》
《VCSEL期刊文献检索与分析-2022版》
《传感应用的VCSEL技术及市场-2021版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 127浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 95浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 122浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 74浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 66浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 111浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 79浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 145浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 209浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦