高效精确控制超纯水中的溶解气体,满足半导体工艺和设备需求

中国半导体论坛 2023-10-09 17:22

中国半导体论坛 振兴国产半导体产业!


   

一,超纯水及溶解气体应用介绍

超纯水是微电子行业的工艺用水,半导体工厂会大量使用超纯水,主要用于各个制程前后的湿法清洗。超纯水中的任何污染物都会对产品良率造成影响,例如金属离子,有机物,细菌微生物,颗粒物,硅和溶解气体,不同的制程对于超纯水的规范要求如表1所示。

表1,微电子行业超纯水指标

对于超纯水中的溶解气体,溶解氧会导致二氧化硅薄膜生长,互联线路腐蚀等问题,溶解二氧化碳会导致阴离子超标,设备运行不稳,水质电阻不达标等问题,溶解气泡会导致晶圆表面润湿或图形缺陷等问题。因此超纯水溶解气体控制至关重要。

超纯水生产有多道工艺逐级控制各种污染物,总得来讲分为第一阶段,预处理,主要包括多介质,活性炭,软化,超滤,两级RO,阴阳床,脱碳塔/膜接触器,各级加药等工艺;第二阶段,制成段,主要包括连续电除盐EDI,阴阳床,再生混床,UV, 第一级脱氧等工艺;第三阶段,抛光段,主要包括TOC-UV,抛光混床,终端超滤/终端滤芯,二级脱氧等工艺;典型的工艺流程如图1所示;

图1,典型超纯水工艺流程及3M过滤与分离解决方案

对于溶解气体控制,同样贯穿于超纯水生产的整个工艺流程,包括预处理阶段的二氧化碳的脱除;制成阶段的二氧化碳和溶解氧脱除;抛光段的溶解氧脱除以及抛光段的溶解气体添加。综上所述,超纯水中的溶解气体控制主要有如下几个应用点,第一,超纯水脱氧;第二超纯水脱二氧化碳;第三超纯水加气-机能水应用;

二,3M Liqui-Cel膜接触器产品介绍

3M Liqui-Cel膜接触器产品已经广泛的应用于各Fab厂超纯水溶解气体控制应用,有超过40年成功应用历史,其稳定的性能和超长的寿命赢得了业主和合作伙伴的一致认可。关于Liqui-Cel膜接触器产品,下面我会简单给大家做个介绍。

Liqui-Cel膜接触器采用疏水聚丙烯材料建造,水不会润湿膜壁。特殊干拉状的膜孔,平均30nm的孔径,使得膜孔只有气体可以自由穿过,而水不会穿过,膜孔扫描电镜图如图2所示。

图2,疏水膜和膜孔电镜图

Liqui-Cel膜丝为中空纤维,300um外径,超高的封装率,产生了超大的气液接触界面和传质效率。超细的膜丝可以很好的承压,不会被外侧过大的水压压溃。

图3,中空纤维膜丝及编织排布

Liqui-Cel膜丝通过编织排布行程膜垫,确保纤维外侧的液体和膜丝可以充分接触,减少旁通。编织结构也可以产生局部湍流,提高传质效率。精确的编织同时保证了产品的一致性。(编织图片)

Liqui-Cel膜组件由膜垫卷绕塑封到膜壳内形成,中间部分由特殊的Baffle设计,确保水流入膜壳内强制辐射状垂直纤维流动,而不是平行于纤维流动,这种结构设计可以最大化气体传质。

图4.a,Liqui-Cel膜组件

Liqui-Cel膜接触器控制溶解气体的原理在于亨利定律,也就是控制与液体接触气相中的气相分压来控制液体中的溶解气体。可以通过扫惰性气体或抽真空降低分压进行脱气,也可以增加分压进行加气,还可以控制一定的分压调节液体中的溶解气体。Liqui-Cel膜接触器通过中空纤维膜壁上的孔提供了巨大的气液两相接触界面,从而最大化气体传质。

图4.b,亨利定律解析

经过几十年的发展,Liqui-Cel已经形成全系列产品线,可以针对不同流量,不同应用,不同行业,不同规范要求,选择的膜组件。

图5,Liqui-Cel全系列产品线

3M Liqui-Cel膜接触器针对不同应用,有多种工作模式,单一吹扫模式,单一真空模式,组合Combo模式和鼓风模式。使用最多的是Combo组合模式,即一侧吹扫惰性气体,另一侧抽真空。

图6,Liqui-Cel膜接触器各工作模式

典型Combo组合模式的PID图如图7所示:

图7,Liqui-Cel膜接触器典型Combo组合模式PID流程图

更多3M产品介绍,请扫描下方二维码咨询

三,3M Liqui-Cel膜接触器对于具体超纯水溶解气体控制的实现

上面介绍完了Liqui-Cel膜接触器产品,下面我会分别从超纯水脱氧,脱二氧化碳,添加溶解气体这三个应用来详细介绍一下Liqui-Cel膜接触器如何应用于这些应用。

1,超纯水脱氧

溶解氧对于半导体制程至关重要,超纯水中的溶解氧会直接导致硅晶圆热氧化,铜互连的氧化腐蚀等问题,会直接导致良率下降和设备及工艺问题。不同线宽的集成电路对超纯水中溶氧的指标有所不同,如表1所示,通常40nm以下制程,溶解氧指标都要求在1ppb以下,甚至大部分12英寸Fab厂甚至一些8英寸Fab也提升对溶氧的要求到1ppb以下。

溶解氧控制在半导体超纯水生产工艺中主要有两个位置,如图1所示,一个在制成段,去除超纯水中绝大部分溶解氧,通常安装在混床或EDI后,纯水箱之前,将水中的溶解氧从饱和溶氧降低到30ppb以内,甚至10ppb以内。也可以安装于EDI前,脱除二氧化碳的同时,同步脱除溶解氧。由于该脱氧位置脱除大部分溶氧,也叫第一级脱氧或主脱氧。第二个脱氧位置在抛光段,用于将残余的极少量溶氧降低到规范以下,通常在3ppb或1ppb以下,并维持抛光段循环的水一直维持超低氧运行,时刻满足POU用水点需求,这个位置叫二级脱氧,由于抛光段对于纯度的要求很高,该阶段的脱氧设备所有接液材料需要同时满足高纯要求。二级脱氧通常安装在抛光混床后,也有安装于抛光混床前,TOC-UV后的位置。安装于TOC-UV后时,要避免TOC-UV过量的羟基氧化Liqui-Cel膜接触器。

第一级脱氧通常要求99.5%以上的脱除效率,因此需要多级膜组串联,通常是三级来实现。采用高纯氮气吹扫和真空组合模式,最大化脱氧效率。该级脱氧最常用的膜组件规格为14x28或14x40。单只14x28膜最大流量在90立方。第二级脱氧由于高纯度要求,通常选用10x28,玻璃钢内衬PVDF膜壳,如图8所示,

图8,抛光段Liqui-Cel 10x28脱氧系统现场图片

2,超纯水脱除二氧化碳

脱除二氧化碳多用于水体含有过多的二氧化碳或高碱度的场合。二氧化碳通常会以游离二氧化碳或碳酸氢根的形式存在,会增加阴离子交换树脂的工作负荷,会导致EDI出水电阻不稳定,会减少硅和硼的去除率。因此阴床或混床前脱除二氧化碳可以延长使用周期至少2倍以上,减少再生频率及其相关的化学品和水消耗。EDI对入水游离二氧化碳浓度有限制要求,就是为了减少二氧化碳对EDI出水和运行的影响。通常游离二氧化碳的浓度被要求在5ppm以下,也有客户提出更高要求,二氧化碳脱除到1ppm以下。

   Liqui-Cel膜接触器脱除二氧化碳有多个安装位置,如图1所示,可以安装于预处理阶段,比如一二级反渗透膜直接之间,用于替代添加氢氧化钠,对于一些高碱度水质,一级RO+Liqui-Cel+EDI可以很好的替代两级RO+EDI工艺,减少系统投资成本和运行能耗。Liqui-Cel膜接触器还可以替换脱碳塔,用于阴阳床之间,或者用于混床前,用于EDI前。相对于加碱和脱碳塔工艺,Liqui-Cel脱二氧化碳优势汇总如表2所示:

表2,Liqui-Cel脱二氧化碳与传统加药及脱碳塔对比

  Liqui-Cel膜接触器脱二氧化碳系统建造也有多种模式可以选择,可以通过吹扫压缩空气的方式,也可以通过吹扫空气+真空组合模式实现更高效率的脱碳。

3,超纯水加气-机能水

除了从超纯水中脱除气体,为了满足某些特定半导体机台的使用要求,还需要向超纯水中添加气体,比如氮气,氢气,二氧化碳气体,用来满足机台特定的机能,比如添加氢气或氮气提高一些超声波机台对于一些纳米级颗粒的清洗效率,添加二氧化碳提高超纯水电导,有利于提高CMP后清洗效率,或者添加二氧化碳改变水PH值等,因此这些加气的超纯水又称为机能水。

加氮机能水是半导体工艺常用的机能水,通常经过二级脱氧后,超纯水中溶氧小于1ppb,溶氮小于3ppm,而机台要求溶氮达到7ppm甚至更高到饱和溶氮甚至过饱和溶氮。而溶氮可以简单的通过在二级脱氧后再增加一级Liqui-Cel膜接触器来进行加气。加氮机能水可以很好的配合超声波工艺,产生小的气穴,提高对一些纳米级颗粒的去除率。

具体的加气系统,可以有两种配置,一是通过质量流量计控制添加量即可,第二种就是通过控制氮气压力来控制添加量,对于不饱和浓度溶氮,通常通过真空泵和氮气源来控制氮气侧压力来达到要求的浓度。具体PID图如下:

图9,加氮机能水典型工作流程

   3M Liqui-Cel膜接触器除了广泛的应用于半导体超纯水工艺,还用于半导体其他需要控制溶解气体的流体,比如用于镀铜机台电镀液脱除气泡,还可用于半导体厂高氨氮废水处理,脱除水中的氨氮,更多的内容会在后续内容向大家揭晓。关于更多的Liqui-Cel超纯水应用案例和其他半导体应用相关案例,欢迎浏览3M网站或者3M工业过滤专家公众号,也欢迎来电咨询,3M技术和业务团队随时准备为您服务。

更多3M产品介绍,请扫描下方二维码咨询


中国半导体论坛 半导体行业网站,主要有芯片设计 半导体制造 芯片封装 测试,中国半导体论坛是一个以电子技术交流为主的电子工程师论坛
评论 (0)
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 86浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 193浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 622浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 158浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 346浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 311浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 210浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 84浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 341浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 70浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 221浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 89浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 512浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦