工程师实战:单片机裸机程序框架是怎样炼成的?

嵌入式ARM 2020-08-26 00:00


前言

前不久,我有位做测试的朋友转去做开发的工作,面试遇到了一个问题,他没明白,打电话问了我。题目大概就是:

在单片机裸机开发时,单片机要处理多个任务,此时你的程序框架是怎样的呢?

这其实是个经典面试问题,我以前面试也被问过。

答案一:轮询系统

代码结构如:

左右滑动查看全部代码>>>

int main(void)
{
 init_something();
 
 while(1)
 {
  do_something1();
        do_something2();
        do_something3();
 }
}

这种结构大概是我们初学单片机的时候的代码结构。在没有外部事件驱动时,可以较好使用。

只答出了这种情况,印象分估计会比较低,多半凉凉。

答案二:前后台系统

代码结构如(该代码来自 《RT-Thread内核实现与应用开发实践指南》 ):

左右滑动查看全部代码>>>

int flag1 = 0;
int flag2 = 0;
int flag3 = 0;

int main(void)
{
 /* 硬件相关初始化 */
 HardWareInit();

 /* 无限循环 */
 for (;;) {
   if (flag1) {
     /* 处理事情 1 */
     DoSomething1();
   }

   if (flag2) {
     /* 处理事情 2 */
     DoSomethingg2();
   }

   if (flag3) {
     /* 处理事情 3 */
     DoSomethingg3();
   }
 }
}

void ISR1(void)
{
 /* 置位标志位 */
 flag1 = 1;
 /* 如果事件处理时间很短,则在中断里面处理
 如果事件处理时间比较长,在回到后台处理 */

 DoSomething1();
}

void ISR2(void)
{
 /* 置位标志位 */
 flag2 = 2;

 /* 如果事件处理时间很短,则在中断里面处理
 如果事件处理时间比较长,在回到后台处理 */

 DoSomething2();
}

void ISR3(void)
{
 /* 置位标志位 */
 flag3 = 1;
 /* 如果事件处理时间很短,则在中断里面处理
 如果事件处理时间比较长,在回到后台处理 */

 DoSomething3();
}

此处,中断称为前台,main中的while循环称为后台。相比于循环系统,这种方式相对可以提高外部事件的实时响应能力。

可以回答出这种情况,印象分大概一半以上,会再细问。

答案三:升级版前后台系统(软件定时器法)

以前,学C语言时,常常听到有人说:指针是C语言的灵魂,没学会指针就是没学会C语言。。

后来,学单片机时,又听到有人说:中断和定时器是单片机的灵魂,没掌握中断与定时器就没学会单片机。。

大佬们都那么说了,那就拿定时器来搞点事情。定时器浑身都是宝,本篇笔记我们来介绍使用定时器(系统滴答定时器或者其它定时器)来做的裸机框架。软件定时器法也有另一种说法:时间片轮询法。

可以回答出这种情况,这场面试多半稳了。

下面以STM32单片机为例看看这种方法的使用。

站在巨人的肩膀上

开源项目—— MultiTimer ,项目仓库地址:

https://github.com/0x1abin/MultiTimer

1、MultiTimer 简介

MultiTimer 是一个软件定时器扩展模块,可无限扩展你所需的定时器任务,取代传统的标志位判断方式, 更优雅更便捷地管理程序的时间触发时序。

2、MultiTimer 的demo

左右滑动查看全部代码>>>

#include "multi_timer.h"

struct Timer timer1;
struct Timer timer2;

void timer1_callback()
{
    printf("timer1 timeout!\r\n");
}

void timer2_callback()
{
    printf("timer2 timeout!\r\n");
}

int main()
{
    timer_init(&timer1, timer1_callback, 10001000); //1s loop
    timer_start(&timer1);
    
    timer_init(&timer2, timer2_callback, 500); //50ms delay
    timer_start(&timer2);
    
    while(1) {
        
        timer_loop();
    }
}

void HAL_SYSTICK_Callback(void)
{
    timer_ticks(); //1ms ticks
}

3、MultiTimer 的移植、剖析

想要对MultiTimer 进行深入学习可阅读项目源码及如下这篇文章:

第6期 | MultiTimer,一款可无限扩展的软件定时器

自己动手,丰衣足食

1、代码模板

准备一个定时器,可以是系统滴答定时器,也可以是TIM定时器,使用这个定时器拓展出多个软件定时器。

比如我们系统中有三个任务:LED翻转、温度采集、温度显示。此时我们可以使用一个硬件定时器拓展出3个软件定时器,定义如下宏定义:

左右滑动查看全部代码>>>

#define  MAX_TIMER            3            // 最大定时器个数
EXT volatile unsigned long    g_Timer1[MAX_TIMER]; 
#define  LedTimer             g_Timer1[0]  // LED翻转定时器
#define  GetTemperatureTimer  g_Timer1[1]  // 温度采集定时器
#define  SendToLcdTimer       g_Timer1[2]  // 温度显示定时器

#define  TIMER1_SEC        (1)              // 秒
#define  TIMER1_MIN        (TIMER1_SEC*60)  // 分


在定时器初始化的时候也顺便给三个软件定时器进行初始化操作:

左右滑动查看全部代码>>>

/********************************************************************************************************
** 函数: TIM1_Init, 通用定时器1初始化
**------------------------------------------------------------------------------------------------------
** 参数: arr:自动重装值 psc:时钟预分频数
** 说明: 定时器溢出时间计算方法:Tout=((arr+1)*(psc+1))/Ft
** 返回: void 
********************************************************************************************************/

void TIM1_Init(uint16_t arr, uint16_t psc)
{
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
 NVIC_InitTypeDef NVIC_InitStructure;
 
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); 
 
 /* 定时器TIM1初始化 */
 TIM_TimeBaseStructure.TIM_Period = arr; 
 TIM_TimeBaseStructure.TIM_Prescaler =psc; 
 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; 
 TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  
 TIM_TimeBaseStructure.TIM_RepetitionCounter=0;
 TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); 
  TIM_ClearFlag(TIM1,TIM_FLAG_Update );
 
 /* 中断使能 */
 TIM_ITConfig(TIM1,TIM_IT_Update, ENABLE ); 
 
 /* 中断优先级NVIC设置 */
    NVIC_InitStructure.NVIC_IRQChannel =  TIM1_UP_IRQn;
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;  
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;  
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
 NVIC_Init(&NVIC_InitStructure);  
 TIM_Cmd(TIM1, ENABLE);  
    
 // 全局定时器初始化
 for(int i = 0; i < MAX_TIMER; i++)
 {
  g_Timer1[i] = 0;   
 }
}


在定时器中断中对这些软件定时器进行定时值做递减操作:

左右滑动查看全部代码>>>

/********************************************************************************************************
** 函数: TIM1_IRQHandler,  定时器1中断服务程序
**------------------------------------------------------------------------------------------------------
** 参数: 无
** 返回: 无 
********************************************************************************************************/

void TIM1_UP_IRQHandler(void)   //TIM1中断
{
 uint8 i;
 
 if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET)  // 检查TIM1更新中断发生与否
 {
  //-------------------------------------------------------------------------------
  // 各种定时间器计时
  for (i = 0; i < MAX_TIMER; i++)     // 定时时间递减     
   if( g_Timer1[i] ) g_Timer1[i]-- ;
  TIM_ClearITPendingBit(TIM1, TIM_IT_Update);     //清除TIMx更新中断标志 
 }


我们在各个定时任务中给这些软件定时器赋予定时值,这些定时值递减到0则该任务会被触发执行,比如:

左右滑动查看全部代码>>>

void Task_Led(void)
{
 //----------------------------------------------------------------
 // 等待定时时间
 if(LedTimer) return;
 LedTimer = 1 * TIMER1_SEC;
 //----------------------------------------------------------------
 // LED任务主体
 LedToggle();
}

void Task_GetTemperature(void)
{
 //----------------------------------------------------------------
 // 等待定时时间
 if(LedTimer) return;
 LedTimer = 2 * TIMER1_SEC;
 //----------------------------------------------------------------
 // 温度采集任务主体
 GetTemperature();
}

void Task_SendToLcd(void)
{
 //----------------------------------------------------------------
 // 等待定时时间
 if(LedTimer) return;
 LedTimer = 2 * TIMER1_SEC;
 //----------------------------------------------------------------
 // 温度显示任务主体
 LcdDisplay();
}


如此一来,每过1、2、4秒则分别触发LED翻转任务、温度采集任务、温度显示任务。

这里配置的最小定时单位为1秒,当然根据实际需要进行配置(定时器初始化),定时器初始化可以放在系统统一初始化函数里:

左右滑动查看全部代码>>>

/********************************************************************************************************
** 函数: SysInit, 系统上电初始化
**------------------------------------------------------------------------------------------------------
** 参数: 
** 说明: 
** 返回: 
********************************************************************************************************/

void SysInit(void)
{
 CpuInit();                  // 配置系统信息函数
 SysTickInit();              // 系统滴答定时器初始化函数
 UsartInit(115200);          // 串口初始化函数,波特率115200
 TIM1_Init(2000-136000-1); // 定时周期1s
 LedInit();                  // Led初始化
 TemperatureInit();          // 温度传感器初始化
 LcdInit();                  // LCD初始化
}


此时我们的main函数就可以设计为:

int main(void)
{
 //----------------------------------------------------------------------------------------------- 
 // 上电初始化函数
 SysInit(); 
 
 //----------------------------------------------------------------------------------------------- 
 // 主程序
 while (1)
 {
  //----------------------------------------------------------------------------------------------- 
  // 定时任务
  Task_Led();
  Task_GetTemperature(); 
  Task_SendToLcd();
 }
}

主函数主要是进行系统上电的一些初始化操作,接着是调用各定时任务函数。

本demo使用定时器1来扩展出3个软件定时器,如果TIM资源不够用,可以换用系统滴答定时器来做。如:

其中,时间基数可以根据实际需要进行调整。

2、实践(代入法)

套用以上模板,分享我的一个实例:


需要思考及注意的问题是给每个任务的定时值设置多大合适?这也是一些朋友有疑问的,这只能是自己对自己的任务做考虑,具体情况具体分析,给经验值、调试调整。

就如同常常有人问定义多大的数组合适?在使用RTOS时每个线程的线程栈大小设置多大合适、优先级设置为多少合适?这些都是需要我们自己进行思考的。

有模板/轮子套用是好事,但有些问题不能单单依靠模板,否则有可能把自己给套进去。

以上是以STM32为例的,其它单片机也是可以用这样子的思想的,包括51单片机。

面对文首提到的面试问题,若是可以提到使用软件定时器来处理,进一步能清楚地表达出来,再进一步能写出一些伪代码,那这场面试多半是稳了。

不仅仅是为了面试,本文的方法是很经典的,小编曾经接触的产品项目中就有用到,很实用,值得学习掌握。方法掌握多了,实际应用的时候想用屠龙刀还是倚天剑根据实际情况选择使用即可。

以上就是本次的分享,如有错误,欢迎指出,谢谢。


-END-


本文授权转载嵌入式大杂烩,作者:ZhengNL




推荐阅读



【01】怎么学习单片机外围器件?
【02】漫画版:如何学习单片机?
【03】单片机:3种时钟电路方案对比,你常用哪一种?
【04】单片机编程技术学习攻略
【05】国产超低价单片机五宗罪!“扶不起”的原因就是它们?


免责声明:整理文章为传播相关技术,版权归原作者所有,如有侵权,请联系删除
嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 37浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 92浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 115浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 33浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 37浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 48浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 128浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 35浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 50浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 150浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦