嵌入式编程:union的精妙之用

嵌入式ARM 2023-10-07 12:01

一、union概念

union 在中文的叫法中又被称为共用体,联合或者联合体,它定义的方式与 struct 是相同的,但是意义却与 struct 完全不同,下面是 union 的定义格式:

  1. union共用体名

  2. {

  3. 成员列表

  4. }共用体变量名;

它与结构体的定义方式相同,那么区别是什么呢?

下面,我们通过一个 struct 与 union 的嵌套来说明两者的区别所在。

  1. struct my_struct

  2. {

  3. int type;

  4. union my_union

  5. {

  6. char*str;

  7. int number;

  8. }value;

  9. }Elem_t;

访问方式是同结构体是一样的,比如我要访问 number 变量,那么就可以以如下的方式进行访问:

  1. Elem_t.value.number = 10;

union 与 struct 的区别是什么呢?用一句话概括就是共用体中的成员的地址都是一样的,结构体中的成员都具有各自的地址,下面用一张图展示 Elem_t 在内存中的存储。

看到变量在内存中的存储位置之后,也就明白 union 的特性了,对于这样存储的好处显而易见,程序中能够使用不同类型的变量并且只占用一个变量的存储空间,能够节省存储空间。

上述程序中共用体的中两个成员所占的存储空间大小一样,都是四个字节,所以最终这个共用体所占存储空间的大小就是四个字节。如果共用体的成员的存储空间大小不一样,那么共用体存储空间的大小取决于成员中存储空间最大的一个。

二、union的应用

1、使用union来打包数据

在使用联合在打包数据的时候,必须要清楚当前处理器是大端对齐还是小端对齐。

  • 大端对齐:数据的低位保存在内存的高地址中,数据的高位保存的内存的低地址中。

  • 小端对齐:数据的低位保存在内存的低地址中,数据的高位保存在内存的高地址中。

下面用图的形式举一个例子分别在大端对齐和小端对齐中的存储形式。

有了大端对齐和小端对齐的认知下,我们来看 union 如何对数据进行打包,下面给出一段代码:

  1. #include

  2. int main(void)

  3. {

  4. union

  5. {

  6. unsignedint word;

  7. struct

  8. {

  9. unsignedchar byte1;

  10. unsignedchar byte2;

  11. }byte;

  12. }u1;


  13. u1.byte.byte1 = 0x21;

  14. u1.byte.byte2 = 0x43;

  15. printf("The Value of word is:0x%x\n",u1.word);

  16. }

上述的运行结果会根据对齐方式的不一样而有所差别。如果是小端模式:

  1. TheValue of word is:0x4321

如果是大端模式:

  1. TheValue of word is:0x2143

当然对于采用这种方式进行数据的打包来说,弊端也是很明显的,因为会因为处理器的对齐方式而产生不同的结果,所以,我们往往采用的都是通过数据移位的方式来实现:

  1. uint8_t byte3 = 0x21;

  2. uint8_t byte4 = 0x43;

  3. uint16_t word;

  4. word = (((uint16_t)byte4) << 8)|((uint16_t)byte3);

上述的写法便不会收到处理器对齐方式的影响,也具有更好地移植性。

2、union在数据传输中的应用

背景:现在有两个小车需要进行通信,分别是小车 A 和小车 B ,有些时候,小车 A 需要向小车 B 发送它当前的速度,有些时候,小车 A 需要向小车 B 发送它当前的位置,而有些时候小车 A 需要向小车 B 发送它当前的状态。

分析:在上面的背景当中,我们得知发送的消息的时候并不是同时要发送速度,状态,位置,而是这三个参数分开来的,并不是同时需要,那这个时候,我们就可以采用 union 的特性来构造一个数据结构,这样做的好处是能够缩减变量占用的内存,比如说我们不采用 union 来构造的话,通常我们会采用结构体的方式,比如这样:

  1. struct buffer

  2. {

  3. uint8_t power; /*当前电池容量*/

  4. uint8_t op_mode; /*操作模式*/

  5. uint8_t temp; /*当前的温度*/

  6. uint16_t x_pos;

  7. uint16_t y_pos;

  8. uint16_t vel; /*小车当前的速度*/

  9. }my_buff;

采用上述的结构的话,我们可以计算一下(不考虑内存对齐的情况,内存对齐的话要对结构体内存进行填充,笔者打算后面单写一篇文章记录内存对齐的问题),结构体占用的存储空间是 9 个字节,为了优化我们的代码,我们可以采用如下的方式来构造我们要传输的数据。

  1. union

  2. {

  3. struct

  4. {

  5. uint8_t power;

  6. uint8_t op_mode;

  7. uint8_t temp;

  8. }status;


  9. struct

  10. {

  11. uint16_t x_pos;

  12. uint16_t y_pos;

  13. }position;


  14. uint16_t vel;

  15. }msg_union;

这样一来,从存储空间来讲,这个 union 所占的空间只有 4 个字节。如果要将发送的数据封装成一个数据帧,那上面所定义的 union 就存在问题了,因为接收方就不知道发送方发过去的是哪个参数,因此,需要在里面加入参数类型这个变量,于是就有了如下的代码:

  1. struct

  2. {

  3. uint8_t msg_type;

  4. union

  5. {

  6. struct

  7. {

  8. uint8_t power;

  9. uint8_t op_mode;

  10. uint8_t temp;

  11. }status;


  12. struct

  13. {

  14. uint16_t x_pos;

  15. uint16_t y_pos;

  16. }position;


  17. uint16_t vel;

  18. }msg_union;

  19. }message;

有了 msg_type 的加入,我们就可以在接收端对数据进行解析了。

小结:通过上述的这个例子,我们现在来回顾一下,如果不使用 union 的话,在进行数据传输的时候,直接将由 struct 构造的数据形成数据帧发送过去,发送的数据包要比使用 union 构造的数据大不少,使用 union 构造数据,既能够帮助我们节省了存储空间,还节省了通信时的带宽。

3、union在数据解析中的应用

上面一个例子我们使用 union 在数据传输中优化了代码,那么 union 在数据解析中又具有什么作用呢,看下面这样一段代码:

  1. typedefunion

  2. {

  3. uint8_t buffer[PACKET_SIZE];


  4. struct

  5. {

  6. uint8_t size;

  7. uint8_t CMD;

  8. uint8_t payload[PAYLOAD_SIZE];

  9. uint8_t crc;

  10. }fields;

  11. }PACKET_t;


  12. // 函数调用方法:packet_builder(packet.buffer,new_data)

  13. // 将新数据存到 buffer 的时候,还需要一些额外的操作

  14. // 比如应该将 size 存放 buffer[0]中

  15. // 将 cmd 存放到 buffer[1] 中,依次类推

  16. void packet_builder(uint8_t*buffer,uint8_t data)

  17. {

  18. staticuint8_t received_bytes = 0;

  19. buffer[received_bytes++] = data;

  20. }


  21. void packet_handler(PACKET_t*packet)

  22. {

  23. if(packet->fields.size > TOO_BIG)

  24. {

  25. //错误

  26. }

  27. if(packet->fields.cmd == CMD)

  28. {

  29. //处理对应的数据

  30. }

  31. }

要理解这个数据解析过程,需要用到 union 中的成员存放在同一个地址这个特性,buffer[PACKET_SIZE]中的元素与 fields 中的元素是一一对应的,用一张图来表示就很清楚了,如下图所示:

看了这张图,我想就很清楚了,往 buffer 里写了数据,直接从 fileds 里面读出来就可以了。

三、总结

运用好 union 不仅仅是能够节省存储空间,用好地址共享这个特性也能够实现很精妙的效果,笔者之前都没怎么用过 union,这几天关于 union 的学习也使笔者意识到路漫漫其修远兮,但是也引用胡适先生的一句话:怕什么真理无穷,进一寸有一寸的欢喜。

参考资料:

[1] https://www.allaboutcircuits.com/technical-articles/union-in-c-language-for-packing-and-unpacking-data/

[2] https://www.allaboutcircuits.com/technical-articles/learn-embedded-c-programming-language-understanding-union-data-object/.

[3] https://stackoverflow.com/questions/252552/why-do-we-need-c-unions.

END

来源:wenzi嵌入式软件

版权归原作者所有,如有侵权,请联系删除。

推荐阅读
用“两个浮点数相等”被说了一顿
麒麟9000s,并非来自SMIC,而是...
程序员最容易读错的单词,听到status我炸了

→点关注,不迷路←

嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 78浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 67浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 65浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 65浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 45浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 44浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦