标准化:Chiplet与UCIe技术

智能计算芯世界 2023-10-07 07:32

本文来自“2023新型算力中心调研报告(2023)”。更多内容参考“《海光CPU+DCU技术研究报告合集(上)》 ”,“《海光CPU+DCU技术研究报告合集(下)》 ”和“龙芯CPU技术研究报告合集”。

Chiplet 的优势已经获得了充分的验证,接下来的问题就是通用化、标准化。通过标准化,来自不同供应商的芯片可以更容易地实现封装内的互联,在这个前提下,部分 IP 可以固化为芯片,而不再需要分别集成到不同客户的芯片中,也不需要适配太多版本的生产工艺。

在此愿景之下,2022 年 3 月,通用处理器市场的核心玩家 Intel、AMD、Arm 等联合发布了新的互联标准 UCIe(Universal Chiplet Interconnect Express,通用小芯片互连通道,希望解决 Chiplet 的行业标准问题。
由于标准的主导者与 PCIe 和 CXL(Compute Express Link已有千丝万缕的关系,因此,UCIe 非常强调与 PCIe/CXL 的协同,在协议层本地端提供 PCIe 和 CXL 协议映射。

与 CXL 的协同,说明 UCIe 的目标不仅仅是解决芯片制造中的互联互通问题,而是希望芯片与设备、设备与设备之间的交互是无缝的。在 UCIe1.0 标准中,即展现了两种层面的应用:Chiplet(In package和Rackspace(Off package

△ UCIe 规划的机架连接交给了 CXL
过去十年间,CPU 的核心数量从 8~12 个的水平,增长到了 60 乃至 96 核,Arm 已有 192 核的产品,而每插槽 CPU 的内存通道数仅从 4 通道增加到 8 或 12 通道。每通道的内存在此期间也经过了三次大的迭代,带宽大概增加 1.5~2 倍,存储密度大约为 4 倍。从发展趋势来看,每个 CPU 核心所能分配到的内存通道数量在明显下降,每核心可以分配的内存容量和内存带宽其实也有所下降。这是内存墙的一种表现形式,导致 CPU 核心因为不能充分得到数据来处于满负荷的运行状态,会导致整体计算效率下降。

为什么增加内存通道如此缓慢?因为增加内存通道不仅仅需要增加芯片面积,还需要扩展对外接口,在电气连接方式没有根本性改变的情况下,触点数量的大量增加会导致 CPU 封装面积剧增。10 年前的英特尔至强(Intel Xeon处理器的 LGA2011 封装尺寸为 52.5mm×45.0mm(毫米,当前 Xeon 所用 LGA 4677 封装尺寸为 77.5mm×56.5mm,触点数量增加了 1.33 倍,封装面积增加了 1.85 倍。
而 AMD 第四代 EPYC 启用的新封装 SP5 更大,有 6096 个触点,封装面积达到 75.4mm×72mm,跟一张扑克牌差不多大了,毕竟它的内存通道数量达到了 12 个。为了与 AMD 和 Arm 继续“核战”,英特尔代号 Granite Rapids 和 Sierra Forest 的下一代 Xeon 将启用 LGA 7529 插槽,尺寸 105mm×70.5mm。作为参考,iPhone 4的正面尺寸是 115.2mm×58.6mm,iPhone 8 则为 138.4mm×67.3mm。
同时,主板上内存相关的走线数量和距离也需要相应增加,保证信号质量的难度加大。CPU 插槽面积增加、内存槽数量增加,还受到主板面积的限制。按照英特尔和 AMD 的通用处理器的这个发展趋势, 双路服务器的主板布局将会愈加困难,其市场份额可能会逐步下降。

通过 CXL 扩展内存,可以将 CPU 与内存从沿革多年的紧耦合关系变为松耦合,利用 PCIe/CXL 通道的物理带宽增加内存总带宽,而不仅仅限于内存控制器自身的通道总数(即使前者的带宽相对较低,但也是增量,利用机箱的立体空间容纳更大容量的内存,而不再受主板面积的约束。

△ CXL 内存

考虑到人工智能,尤其是机器学习领域的发展,模型容量在过去 5 年间大致增加了 50 倍,内存容量的扩展方式确实值得突破一下。不过这也不是一蹴而就的,毕竟第四代英特尔至强可扩展处理器每插槽 CPU 只支持 4 个 CXL 设备,给计算卡之类的一分就没了。所以也就不用纠结它暂时没有宣布支持 CXL Type 3 Device(Memory Buffer

在第四代可扩展至强处理器平台上,如果支持 CXL 1.1 的加速卡、计算卡 、智能网卡能够提供比 PCIe 5.0 更好的性能,稍微拉近跟 SMX 接口(NVLink的性能落差,那就非常开心了。而 AMD 则反过来,处理器大核确实多,而且不论单路还是双路处理器,内存槽上限都是 24 条,如果不优先另辟蹊径扩展内存容量,每个核心能够分配到的内存资源其实反而会落了下风,补短板看起来更迫切。但是,AMD 同样也会面临内存扩展与计算卡抢PCIe 通道数量的问题。

总之,不论这两家通用处理器具体各怀啥心思,CXL 的第一轮普及工作就是不尽如人意,顾此失彼。甚至现在还不到纠结内存扩展的时候,即使 CXL 内存模组已然是各种技术论坛中样品最接近现实的 CXL 设备。在这个阶段,解决 CXL 设备的有无问题,借机逐步导入 EDSFF,初步形成生态环境,就算是成功。至于内存的大事情,且得看下一代平台以及更新版本的 CXL。

△ CXL 的本地内存扩展

到了 CXL 2.0,通过 CXL Switch,内存扩展将可以跨 CPU 实现。这个阶段将构建机柜级的资源池化。这其中的好处多多,此处主要集中在云服务的需求角度去看。

微软曾调研了 Azure 公有云数据中心的内存使用情况,其结论是:有约 50% 的服务器的实际内存利用率不到一半。这是由于内存的分配是与 CPU 核心绑定的,当客户按照预设的实例配置租用资源时,每个核心便搭配了固定容量的内存,譬如 2GB。当主机的 CPU 核心数量被分配完毕后,未被搭配的内存便被闲置了。考虑到预先配置的内存容量相对核心数量必然是超配的,譬如 56 核的至强,搭配 128GB 内存,每个实例配 2GB 内存的话,那注定有 128-2×56=16 GB 内存将会被闲置。如果服务器核心未被充分利用,被闲置的内存将会更多。而运行中的实例,其实际内存占用率通常也不高。由此,无从分配的、未被分配的、分配但未充分使用的,这三种性质的浪费叠加之后,主机的实际内存浪费相当惊人。

由此,微软提出通过内存池来解决这个问题。各主机搭配容量较少的内存,其余内存放入内存资源池。当 CPU 本地内存不足时,再到内存池调用。这虽然增加了一些访问延迟,但会降低内存的总成本。如果减少 10% 的内存搭配数量,对于大型数据中心而言也是数以亿计的资金节约。微软预计通过 CXL 和内存池化,可以为云数据中心减少 4~5% 的成本。

除了节约总内存投入,内存池化还可以带来内存持久化、内存故障热迁移等等新的功能特性以供业界进一步挖掘,此处暂不展开。

CXL 的完整愿景,需要到 CXL 3.0 规范才能实现。

首先是带宽,CXL 3.0 基于 PCIe 6.0,更换了 PCIe 沿革多年的 NRZ 调制方案,变为 PAM-4 脉冲幅度调制编码,在电气特性变化不大的情况下,链路带宽翻倍,从 32GT/s 提升到了 64GT/s。

其次,CXL3.0 增加了对二层交换机的支持,也就是叶脊(Leaf-Spine网络架构,资源池化也不再局限于内存,而是可以实现 CPU 资源池、加速器资源池、网卡资源池等。
△ CXL 3.0 将改变资源的组织方式

CXL 2.0 实现的是机柜内的池化,CXL 3.0 除了可以在一个机柜内实现计算资源和存储资源的解耦和池化,还可以在多个机柜之间建立更大的资源池。跨主机、跨机柜调度规模巨大的计算资源,已经是超算的范畴了。然后,CXL 3.0 网络可以支持 4096 个 CXL 节点!单纯从数量上看,这远远超过了 NVLink 网络 256 个节点的规模(见下一章。这将是 CXL 对私有但标榜高性能的 NVLink 最有力的挑战。当然,CXL 3.0 依旧暂时还未落地,而 NVIDIA 新一代的系统已经正式发布了。二者在机柜互联方面的带宽远超 400G InfiniBand(IB)或者以太网,实际运行效率都是非常值得期待的。

下载链接:
《华为:迈向智能世界白皮书2023版(合集)》
1、迈向智能世界白皮书2023版(计算)
2、迈向智能世界白皮书2023版(云计算) 3、迈向智能世界白皮书2023版(数字金融) 4、迈向智能世界白皮书2023版(数据通信) 5、迈向智能世界白皮书2023版(数据存储)

《FMS 2023闪存峰会CXL合集(1)》

《FMS 2023闪存峰会CXL合集(2)》
下一代超融合架构白皮书
《46+份超融合技术及报告合集》
《数据中心技术合集》
1、数据中心超融合以太技术白皮书
2、数据中心可持续发展能力要求 

3、数据中心绿色设计白皮书(2023) 

4、新型数据中心高安全技术体系白皮书

异构融合计算技术白皮书
超融合数据中心网络
中国联通的开放网络研究与实践
中国联通开放硬件网络设备白皮书
白牌网络及交换机白皮书汇总
1、掘金云数据中心白盒化趋势.pdf
2、商用交换芯片SDN支持现状分析.pdf
3、未来网络白皮书——白盒交换机技术白皮书.pdf
4、协议无关交换机架构技术与应用白皮书.pdf
5、中国联通开放硬件网络设备白皮书.pdf
6、中兴通讯CO重构技术白皮书.pdf
《2022网信自主创新调研报告(2023)》
《2022中国物联网行业研究报告》
2021年中国物联网云平台发展研究报告
《算力网络技术合集(1)》
1、算力网络关键技术及发展挑战分析 2、中国算力网络全景洞察白皮书 3、算力感知网络CAN技术白皮书(中国移动) 4、算力时代网络运力研究白皮书 5、数字中国建设关键基础设施,算力网络时代来临(2023) 6、算力网络技术白皮书
《算力网络技术合集(2)》
7、算力网络场景下SLA约束的能耗优化微服务调度策略(2023) 8、网络算力接入时延圈绘制展示研究和实践(2023) 9、浅析面向算力时代全光底座的构建 10、云渲染任务智能算力调度策略研究(2023) 11、算力网络推进金融元宇宙落地(2023) 12、全光算力网络关键技术及建设策略研究(2023)

数据中心绿色设计白皮书(2023)

存储系统性能和可靠性基础知识

云基建专题:AI驱动下光模块趋势展望及弹性测试

精华:数据库系统的分类和评测研究

可重构计算:软件可定义的计算引擎

近存及存内计算专题简介

集装箱冷板式液冷数据中心技术规范

浸没式液冷发展迅速,“巨芯冷却液”实现国产突破

两相浸没式液冷—系统制造的理想实践

浸没液冷服务器可靠性白皮书

天蝎5.0浸没式液冷整机柜技术规范

AIGC加速芯片级液冷散热市场爆发

某液冷服务器性能测试台的液冷系统设计

《智能存储与磁盘故障预测合集》

《内存技术应用研究及展望合集》


本号资料全部上传至知识星球,加入全栈云技术知识星球下载全部资料。




免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言删除,谢谢。



温馨提示:扫描二维码关注“全栈云技术架构”公众号,点击阅读原文进入“全栈云技术知识”星球获取10000+技术资料。


智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论 (0)
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 228浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 113浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 128浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 235浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 159浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 236浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 256浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 250浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 200浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 251浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 189浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦