2023年诺贝尔化学奖揭晓!他们让元素周期表从此有了第三个维度

锂电联盟会长 2023-10-04 22:27

点击左上角“锂电联盟会长”,即可关注!

2023 年 10 月 4 日北京时间 17 时 45 分许,瑞典皇家科学院在斯德哥尔摩宣布,将2023年度诺贝尔化学奖授予美籍法国-突尼斯裔化学家莫吉·G·巴旺迪 (Moungi G. Bawendi),美国化学家路易斯·E·布鲁斯(Louis E. Brus) 和俄罗斯物理学家阿列克谢·埃基莫夫(Alexei I. Ekimov),以表彰他们发现和合成量子点。

莫吉·G·巴旺迪 (Moungi G. Bawendi


Moungi G. Bawendi,突尼斯裔美国化学家,麻省理工学院 (MIT) 教授。1961 年出生于法国巴黎。1988年获得美国伊利诺伊州芝加哥大学博士学位。Bawendi 是胶体量子点研究领域的最早参与者之一,也是过去十年被引用最多的化学家之一。他于 2020 年成为科睿唯安引文桂冠获得者。

路易斯·E·布鲁斯(Louis E. Brus)

Louis E. Brus,美国化学家,1943年出生于美国俄亥俄州,1969年获美国纽约哥伦比亚大学博士学位。现任美国纽约哥伦比亚大学教授。1998年当选为美国艺术与科学院院士,2004年当选为美国国家科学院院士,并且是挪威科学与文学学院的成员。

阿列克谢·埃基莫夫(Alexei I. Ekimov)

Alexei I. Ekimov俄罗斯固态物理学家,在瓦维洛夫国立光学研究所工作时发现了被称为量子点的半导体纳米晶体。1945 年出生于前苏联。1974 年获得俄罗斯圣彼得堡 Ioffe 物理技术研究所博士学位。曾任美国纽约市 Nanocrystals Technology Inc. 首席科学家。他因在半导体电子自旋取向方面的工作而获得1975 年苏联国家科学与工程奖。他是 2006 年美国光学学会RW Wood 奖的共同获得者表彰“纳米晶体量子点的发现及其电子和光学特性的开创性研究”。




 获奖成果 


They planted an important seed for nanotechnology

The Nobel Prize in Chemistry 2023 rewards the discovery and development of quantum dots, nanoparticles so tiny that their size determines their properties. These smallest components of nanotechnology now spread their light from televisions and LED lamps, and can also guide surgeons when they remove tumour tissue, among many other things.


Everyone who studies chemistry learns that an element’s properties are governed by how many electrons it has. However, when matter shrinks to nano-dimensions quantum phenomena arise; these are governed by the size of the matter. The Nobel Laureates in Chemistry 2023 have succeeded in producing particles so small that their properties are determined by quantum phenomena. The particles, which are called quantum dots, are now of great importance in nanotechnology.


“Quantum dots have many fascinating and unusual properties. Importantly, they have different colours depending on their size,” says Johan Åqvist, Chair of the Nobel Committee for Chemistry.


Physicists had long known that in theory size-dependent quantum effects could arise in nanoparticles, but at that time it was almost impossible to sculpt in nanodimensions. Therefore, few people believed that this knowledge would be put to practical use.


However, in the early 1980s, Alexei Ekimov succeeded in creating size-dependent quantum effects in coloured glass. The colour came from nanoparticles of copper chloride and Ekimov demonstrated that the particle size affected the colour of the glass via quantum effects.


A few years later, Louis Brus was the first scientist in the world to prove size-dependent quantum effects in particles floating freely in a fluid.


In 1993, Moungi Bawendi revolutionised the chemical production of quantum dots, resulting in almost perfect particles. This high quality was necessary for them to be utilised in applications.


Quantum dots now illuminate computer monitors and television screens based on QLED technology. They also add nuance to the light of some LED lamps, and biochemists and doctors use them to map biological tissue.


Quantum dots are thus bringing the greatest benefit to humankind. Researchers believe that in the future they could contribute to flexible electronics, tiny sensors, thinner solar cells and encrypted quantum communication – so we have just started exploring the potential of these tiny particles.




什么是量子点?
一般来说,胶体纳米晶是尺度在1-100nm的晶体以亚稳态的形式存在于溶液中的片段。由于其物理尺寸与许多性质的临界尺寸相近、可观的表面原子比等特点,胶体纳米晶的诸多性能都呈现出尺寸相关的独特现象[1]传统意义上来说,胶体纳米晶主要分为贵金属胶体纳米晶与半导体胶体纳米晶。根据经典的量子限域效应,当半导体胶体纳米晶的几何半径小于其体相材料的激子波尔半径时,价带和导带的能级会呈现离散分布形式,此时纳米晶的性质变得与尺寸相关。于是,经典的研究将半径尺寸小于或接近激子波尔半径的半导体纳米晶称之为量子点。

图1 量子点的结构(表面与核)[2]

量子点合成化学的发展
量子点领域蓬勃发展的基础是量子点合成化学:应用现代化学的合成方法和思想,为整个领域提供了结构多样、性能丰富的高质量材料。

得益于Brus教授卓越的领导才能和Bell实验室优异的合作氛围,胶体量子点合成化学的主要进展也始于Bell实验室。1986年,Louis E. Brus和当时的助手Paul Alivisatos和Michal Steierwald开始了胶体量子点的金属有机化学合成。1988年Moungi G. Bawendi加入到团队中。后来,Paul Alivisatos和Moungi G. Bawendi分别成为独立PI,加入加州大学伯克利分校和麻省理工学院,发起了或许是量子点研究领域最著名的两个课题组,为领域培养了诸多的人才。

量子点合成化学在1990年到1993年之间取得了一次突破,出现了一种 “金属有机-配位溶剂-高温”合成路线。这个方法发明于Bell实验室,成熟于Moungi G. Bawendi在MIT的课题组[3]。它以二甲基镉作为镉源,在高温(300摄氏度左右)、有机配位溶剂中合成高质量的硒化镉量子点。该方法对于整个量子点领域的研究都具有里程碑式意义。Moungi G. Bawendi也因此分享了诺贝尔奖!但由于该合成路线借鉴于“金属有机气相沉积”方法,使用了高毒性、具有爆炸性的原料——二甲基镉,不利于大规模推广。

这个局面在2000年左右被中国学者彭笑刚教授所突破。彭笑刚在1994年加入Paul Alivisatos课题组从事博士后,并在1999年加入阿肯色大学化学系开始独立研究。基于对反应机理的深刻认识,彭笑刚课题组以稳定易得的氧化物或羧酸盐为前体,开发出一种基于安全无毒的非配位溶剂的“绿色”合成路线[4,5]。新合成路线的发展使得量子点的合成逐渐走向全世界的实验,并在工业界得到推广。

与此同时,量子点的生长机理、核壳结构工程和表面配体化学等基础科学问题也被化学家们广泛地探索。这些基础研究的进展使得高质量的量子点从II-IV族CdSe量子点逐步扩大到其它种类半导体化合物,如PbS量子点、InP量子点、CuInS2量子点等。2015年,钙钛矿量子点的出现突破了上述量子点需要高温合成的限制。利用钙钛矿的离子特性带来的溶解度差异,可以在聚合物基质中室温再沉淀或者原位制备量子点,给光学应用带来了新的发展机遇。

得益于合成化学的进展,量子点这个材料家族还在不断地壮大。量子点的形貌、结构调控手段日趋丰富,具有特异性能的功能单元不断产生。

量子点的用途
三十年后的现在,量子点已成为纳米技术的重要工具,并出现在商业化的产品中。研究人员主要利用量子点来产生彩色光。如果用蓝光照射量子点,它们会吸收光并发出一种不同的颜色。通过改变粒子的大小,我们可以精准确定它们的发光颜色。
量子点的发光特性被用于基于QLED技术的计算机和电视屏幕,其中Q代表量子点。在这些屏幕中,蓝光是使用获得 2014 年诺贝尔物理学奖的节能二极管产生的。量子点被用来改变部分蓝光的颜色,将其转换为红色或绿色。这让电视屏幕获得了显示图像所需的三基色光。
一些LED灯也使用了量子点来调节二极管的冷光。这让光线既能像日光一样充满活力,又能使其像暗淡灯泡发出的暖光一样平静。量子点发出的光也可用于生物化学和医学。生物化学家将用量子点与生化分子相连接,以便绘制细胞和器官图谱。医生已经开始研究用量子点追踪体内肿瘤组织的潜在效用。化学家利用量子点的催化特性来驱动化学反应。
量子点正在将其对人类的利益最大化,而我们才刚刚开始探索它的潜力。研究人员相信,未来量子点可以为柔性电子产品、微型传感器、更纤薄的太阳能电池以及加密量子通信做出贡献。有一点是肯定的——关于令人惊奇的量子现象,还有很多未知须要探索。因此,如果 12 岁的多萝西正在寻找冒险,纳米世界可以提供很多东西。

近8年诺贝尔化学奖得主名单

2022年——Carolyn R. Bertozzi,Morten Meldal及K. Barry Sharpless(再次获得化学奖,2001年首次获奖)获奖,以表彰他们在“为点击化学和生物正交化学的发展”做出了突出的贡献。


2021年——Benjamin List 和 David W.C. MacMillan获奖,以表彰他们在 “不对称有机催化”做出了突出贡献。


2020年——法国和美国科学家Emmanuelle Charpentier、Jennifer A. Doudna获奖,以表彰她们“开发出一种基因组编辑方法”。


2019年——美国和日本3位科学家 John B Goodenough、M. Stanley Whittlingham、Akira Yoshino获奖,获奖理由是“在锂离子电池的发展方面作出的贡献”。


2018年——美国科学家Frances H. Arnoid获奖,获奖理由是“研究酶的定向进化”;另外两位获奖者是美国的George P. Smith和英国的Sir Gregory P. Winter,获奖理由是“研究缩氨酸和抗体的噬菌体展示技术”。


2017年——瑞士、美国和英国3位科学家Jacques Dubochet、Joachim Frank和Richard Henderson获奖,获奖理由是“研发出冷冻电镜,用于溶液中生物分子结构的高分辨率测定”。


2016年——法国、美国、荷兰3位科学家Jean-Pierre Sauvage、J. Fraser Stoddart和Bernard L. Feringa获奖,获奖理由是“分子机器的设计与合成”。


2015年——瑞典、美国、土耳其3位科学家Tomas Lindahl、Paul Modrich和Aziz Sancar获奖,获奖理由是“DNA修复的机制研究”。

   
   诺奖小知识

——从1901年到2022年,诺贝尔化学奖共颁发了114次。未颁发的8年分别是1916、1917、1919、1924、1933、1940、1941和1942年。


——114次颁奖中,63次为单人获奖,25次为2人共享,26次为3人共享。


——从1901年至2022年,共189人获奖(有188人次获奖,其中Frederick Sanger及K. Barry Sharpless获得2次化学奖)。


——最年轻的获奖者是法国科学家Frédéric Joliot,1935年因“合成新的放射性元素”与妻子Irène Joliot-Curie一起获奖,时年35岁。


——最年长的获奖者是美国科学家John B. Goodenough,2019年因“在锂离子电池的发展方面作出的贡献”获奖,时年97岁。他也是诺奖得主中获奖时最年长的一位。


——189位诺贝尔化学奖得主中,有8位是女性。分别是1911年的玛丽·居里(玛丽·居里另外还获得1903年的物理学奖)、1935年的Irène Joliot-Curie、1964年的Dorothy Crowfoot Hodgkin、2009年的Ada Yonath、2018年的Frances H. Arnold、2020年的Emmanuelle Charpentier以及2020年的Jennifer A. Doudna、2022年的Carolyn R. Bertozzi。


——Frederick SangerK. Barry Sharpless获得两次诺贝尔化学奖的人。


——诺贝尔化学奖获得者家族:居里家族是最成功的“诺贝尔奖家族”。玛丽·居里和皮埃尔·居里夫妻获得了 1903 年的诺贝尔物理学奖;玛丽·居里本人获得了1911年诺贝尔化学奖;玛丽·居里和皮埃尔·居里的长女艾琳·约里奥-居里与她的丈夫弗雷德里克·约里奥一起获得了 1935 年的诺贝尔化学奖;小女儿Ève Curie 曾在联合国儿童基金会工作,并嫁给了Henry R. Labouisse。1965年,Henry R. Labouisse代表联合国儿童基金会获得诺贝尔和平奖。


参考文献:

[1] Peng. An Essay on Synthetic Chemistry of Colloidal Nanocrystals. Nano Research. 2009, 2, 425-447.
[2] R. Kagan, E. Lifshitz, E. H. Sargent, et al. Building devices from colloidal quantum dots. Science. 2016, 353(6302), aac5523.
[3] Murray, C. B., Norris, D. J., Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706-8715 (1993).

[4] Peng, Z. A., Peng, X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor.J. Am. Chem. Soc.123, 183-184 (2001).

[5] Qu, L. H.; Peng, Z. A.; Peng, X. G. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 1, 333-337, (2001).



(来源:诺贝尔奖官网、赛先生、知识分子、科研大匠、知社学术圈中国科学院高能物理研究所
编辑:亦州

锂电联盟会长 研发材料,应用科技
评论
  • 服务器应用环境与客户需求PCIe 5.0高速接口技术的成熟驱动着生成式AI与高效能运算等相关应用蓬勃发展。在随着企业对服务器性能的要求日益严苛,服务器更新换代的周期也持续加快。在此背景下,白牌与DIY(Do It Yourself)服务器市场迎来了新的发展契机,但同时也面临着更趋复杂的技术挑战。传统上,白牌与DIY服务器以其高度客制化与成本效益优势受到市场青睐。然而,随着PCIe 5.0等高速技术的导入,服务器系统的复杂度大幅提升,对组装技术与组件兼容性也就提出更高的要求。举个简单的例子来说,P
    百佳泰测试实验室 2025-03-06 17:00 44浏览
  • 文/Leon编辑/cc孙聪颖2025年全国两会进行时,作为“十四五”规划收官之年,本届两会释放出坚定目标、稳中求进、以进促稳等信号。其中,企业家们的建议备受关注,关系到民营经济在2025年的走向。作为国内科技制造业的“老兵”,全国人大代表、TCL集团创始人及董事长李东生在本届两会中提出三份代表建议,包括《关于优化中国科技制造业融资环境的建议》、《关于加强AI深度伪造欺诈管理的建议》和《关于降低灵活就业人员社会保险参保门槛的建议》,表现出对科技制造、AI发展和劳动者保障方面的关注。会后,李东生接受
    华尔街科技眼 2025-03-06 19:41 44浏览
  • ASL6328芯片支持高达 6.0 Gbps 运行速率的交流和直流耦合输入T-MDS 信号,具备可编程均衡和抖动清理功能。ASL6328 是一款单端口 HDMI/DVI 电平转换 / 中继器,具有重新定时功能。它包含 TypeC双模式 DP 线缆适配器寄存器,可用于识别线缆适配器的性能。抖动清理 PLL(锁相环)能够消除输入抖动,并完全重置系统抖动容限,因此能更好地满足更高数据速率下 HDMI 抖动合规性要求。设备的运行和配置可通过引脚设置或 I2C 总线实现。自动断电和静噪功能提供了灵活的电
    QQ1540182856 2025-03-06 14:26 86浏览
  • 多人同时共享相同无线网络,以下场景是否是您熟悉的日常?姐姐:「妈~我在房间在线上课,影音一直断断续续的怎么上课啊!」奶奶:「媳妇啊~我在在线追剧,影片一直卡卡的,实在让人生气!」除此之外,同时间有老公在跟客户开在线会议,还有弟弟在玩在线游戏,而妈妈自己其实也在客厅追剧,同时间加总起来,共有五个人同时使用这个网络!我们不论是在家里、咖啡厅、餐厅、商场或是公司,都会面临到周遭充斥着非常多的无线路由器(AP),若同时间每位使用者透过手机、平板或是笔电连接到相同的一个网络,可想而知网络上的壅塞及相互干扰
    百佳泰测试实验室 2025-03-06 16:50 38浏览
  • 随着自动驾驶技术的迅猛发展,构建高保真、动态的仿真场景成为了行业的迫切需求。传统的三维重建方法在处理复杂场景时常常面临效率和精度的挑战。在此背景下,3D高斯点阵渲染(3DGS)技术应运而生,成为自动驾驶仿真场景重建的关键突破。一、3DGS技术概述与原理1、3DGS的技术概述3DGS是一种基于3D高斯分布的三维场景表示方法。通过将场景中的对象转化为多个3D高斯点,每个点包含位置、协方差矩阵和不透明度等信息,3DGS能够精确地表达复杂场景的几何形状和光照特性。与传统的神经辐射场(NeRF)方法相比,
    康谋 2025-03-06 13:17 120浏览
  • 在六西格玛项目中,团队的选择往往决定了最终的成败。合适的团队成员不仅能推动项目顺利进行,更能确保最终成果符合预期。因此,组建六西格玛团队时,必须挑选最合适的人才,确保他们具备必要的能力和特质。团队主管的关键特质每个精益六西格玛项目都需要一位主管来带领团队。他们不仅需要具备领导力,还要能够分析数据、制定策略,并与管理层和团队成员高效沟通。团队主管的核心职责包括:领导团队行动:能够激励成员,确保团队朝着既定目标前进。数据分析能力:精通数据处理和分析,能基于数据做出决策。沟通协调:能够在管理层和团队之
    优思学院 2025-03-06 12:51 98浏览
  • 在当今竞争激烈的市场环境中,企业不仅需要优化成本,还需积极响应国家的能源政策,减少对环境的影响。提升工业能源效率正是实现这一双重目标的关键。中国近年来大力推进“双碳”目标(碳达峰、碳中和),并出台了一系列政策鼓励企业节能减排。通过宏集CODRA的Panorama解决方案,企业可以获得专为这一目标设计的SCADA工具,实时监控和调整所有工业设备的能耗。特别是其中的能源管理模块,能够有效分析数据,预防故障,避免能源浪费。Panorama的优化技术宏集CODRA提供的解决方案,尤其是Panorama
    宏集科技 2025-03-06 11:25 115浏览
  • 文/Leon编辑/侯煜‍2008至2021年间,创维以高举高打的凌厉之势,果断进行投资,一度成为中国市场大屏OLED产业的旗手,引领着显示技术的发展方向。但近年来,创维在 OLED 领域的发展轨迹却逐渐模糊,态度陷入暧昧不明的混沌状态。究其根源,一方面,创维对过往的押注难以割舍,在技术革新与市场变化的浪潮中,不愿轻易推翻曾经的战略布局;另一方面,早期在大屏OLED 技术研发、市场推广等环节投入的巨额资金,已然形成沉没成本,极大地限制了创维在显示技术路线上的重新抉择。但市场瞬息万变,为适应激烈的行
    华尔街科技眼 2025-03-05 20:03 147浏览
  • 引言嘿,各位电动汽车的爱好者们!咱们今儿个就来聊聊电动汽车里那些“看不见,摸不着”,但又至关重要的零部件。要说电动汽车这玩意儿,那可真是科技含量满满,各种高精尖的技术都往里堆。但要让这些高科技玩意儿协同工作,稳定可靠地运转,那就得靠一些幕后英雄,比如说——电容器。你可能会想,电容器?这不就是电子电路里常见的元件嘛,能有多重要? 哎,你可别小瞧了这小小的电容器。在电动汽车的心脏地带——高压直流转换器(DC-DC转换器)里,车规级的电容器那可是扮演着举足轻重的角色。 今天,咱们就聚焦分析三星电机车规
    贞光科技 2025-03-05 17:02 90浏览
  • 概述随着工业4.0的深入推进,制造业对自动化和智能化的需求日益增长。传统生产线面临空间不足、效率低下、灵活性差等问题,尤其在现有工厂改造项目中,如何在有限空间内实现高效自动化成为一大挑战。此次项目的客户需要在现有工厂基础上进行改造,空间有限。为此,客户选择了SCARA型线性轴机器人作为执行设备。然而,SCARA机器人的高效运行离不开强大的控制系统支持。宏集凭借其先进的智能控制系统,为客户提供了高效、灵活的自动化解决方案,确保SCARA机器人在有限空间内发挥最大效能。一、客户需求在此次改造项目中,
    宏集科技 2025-03-06 11:27 120浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦